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Abstract

These lecture notes are based on the master class given at the Cen-
ter for the Topology and Quantization of Moduli Spaces, University
of Aarhus, August 2007. I provide an introduction to the recent work
on the Montonen-Olive duality of N = 4 super-Yang-Mills theory and
the Geometric Langlands Program.
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1 Introduction

The Langlands Program is a far-reaching collection of theorems and conjec-
tures about representations of the absolute Galois group of certain fields. For
a recent accessible review see [1]. V. Drinfeld and G. Laumon [2] introduced
a geometric analogue which deals with representations of the fundamental
group of a Riemann surface C, or, more generally, with equivalence classes of
homomorphisms from π1(C) to a reductive algebraic Lie group GC (which we
think of as a complexification of a compact reductive Lie group G). From the
geometric viewpoint, such a homomorphism corresponds to a flat connection
on a principal GC bundle over C. The Geometric Langlands Duality asso-
ciates to an irreducible flat GC connection a certain D-module on the moduli
stack of holomorphic LG-bundles on C. Here LG is, in general, a different
compact reductive Lie group called the Langlands dual of G. The group LG
is defined by the condition that the lattice of homomorphisms from U(1) to a
maximal torus of G be isomorphic to the weight lattice of LG. For example,
the dual of SU(N) is SU(N)/ZN , the dual of Sp(N) is SO(2N + 1), while
the groups U(N), E8, F4, and G2 are self-dual.

The same notion of duality for Lie groups appeared in the work of P. God-
dard, J. Nuyts and D. Olive on the classification of magnetic sources in gauge
theory [3]. These authors found that magnetic sources in a gauge theory with
gauge group G are classified by irreducible representations of the group LG.
On the basis of this, C. Montonen and D. Olive conjectured [4] that Yang-
Mills theories with gauge groups G and LG might be isomorphic on the
quantum level. This conjecture can be regarded as a generalization of the
electric-magnetic duality in quantum Maxwell theory. Later H. Osborn [5]
noticed that the Montonen-Olive conjecture is more likely to hold for N = 4
supersymmetric version of the Yang-Mills theory. There is currently much
circumstantial evidence for the MO conjecture, but no proof.

It has been suggested by M. Atiyah soon after the work of Goddard,
Nuyts and Olive that Langlands duality might be related to the MO duality,
but only recently the precise relation has been found [6]. In these lectures I
will try to explain the main ideas of [6]. For detailed derivations and a more
extensive list of references the reader is referred to the original paper. I will
not discuss the ramified version of Geometric Langlands Duality; for that the
reader is referred to [7].
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2 Electric-magnetic duality in abelian gauge

theory

I will begin by reviewing electric-magnetic duality in Maxwell theory, which
is a theory of a U(1) gauge field without sources. On the classical level,
this theory describes a connection A on a principal U(1) bundle E over
a four-manifold X. The four-manifold X is assumed to be equipped with a
Lorenzian metric (later we will switch to Riemannian metric). The equations
of motion for A read

d ⋆ F = 0,

where F = dA is the curvature of A and ⋆ is the Hodge star operator on
forms. In addition, the curvature 2-form F is closed, dF = 0 (this is known
as the Bianchi identity), so one can to a large extent eliminate A in favor
F . More precisely, F determines the holonomy of A around all contractible
loops in X. If π1(X) is trivial, F completely determines A, up to gauge
equivalence. In addition, if H2(X) 6= 0, F satisfies a quantization condition:
its periods are integral multiples of 2π. The cohomology class of F is the
Euler class of E (or alternatively the first Chern class of the associated line
bundle).

When X = R3,1, the theory is clearly invariant under a transformation

F 7→ F ′ = ⋆F. (1)

If X is Lorenzian, this transformation squares to −1. It is known as the
electric-magnetic duality. To understand why, let x0 be the time-like coordi-
nate and xi, i = 1, 2, 3 be space-like coordinates. Then the usual electric and
magnetic fields are

Ei = F0i, Bi =
1

2
ǫijkFjk,

and the transformation (1) acts by

Ei 7→ Bi, Bi 7→ −Ei.

Thus, up to some minus signs, the duality transformation exchanges electric
and magnetic fields. The signs are needed for compatibility with Lorenz
transformations. Alternatively, from the point of view of the Hamiltonian
formalism the signs are needed to preserve the symplectic structure on the
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space of fields Ei and Bi. This symplectic structure corresponds to the
Poisson bracket

{Bi(x), Ek(y)} =
e2

2
ǫijk∂jδ

3(x− y),

where e2 is the coupling constant (it determines the overall normalization of
the action).

As remarked above, the classical theory can be rewritten entirely in terms
of F only on simply-connected manifolds. In addition, the ⋆F need not satisfy
any quantization condition, unlike F . Thus it appears that on manifolds more
complicated than R3,1 the duality is absent. Interestingly, in the quantum
theory the duality is restored for any X, if one sums over all topologies of
the bundle E. To see how this comes about, let us recall that the quantum
theory is defined by its path-integral

Z =

∫

DA eiS(A),

where S(A) is the action functional. We take the action to be

S(A) =
1

2e2

∫

X

F ∧ ⋆F +
θ

8π2

∫

X

F ∧ F.

Its critical points are precisely solutions of d ⋆ F = 0. Note that the second
term in the action depends only on the topology of E and therefore does not
affect the classical equations of motion. But it does affect the action and
therefore has to be considered in the quantum theory. In fact, if we sum over
all isomorphism classes of E, i.e. define the path-integral as

Z =
∑

E

∫

DA eiS(A),

the parameter θ tells us how to weigh contributions of different E.
At this stage it is very convenient to replace X with a Riemannian man-

ifold (which we will also denote X). The idea here is that the path-integral
for a Lorenzian manifold should be defined as an analytic continuation of the
path-integral in Euclidean signature; this is known as the Wick rotation. In
Euclidean signature the path-integral and the action look slightly different:

Z =
∑

E

∫

DA e−SE(A),
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where

SE(A) =

∫

X

(

1

2e2
F ∧ ⋆F −

iθ

8π2
F ∧ F

)

Note that the action becomes complex in Euclidean signature.
Now let us sketch how duality arises on the quantum level. Assuming

that X is simply-connected for simplicity, we can replace integration over A
with integration over the space of closed 2-forms F satisfying the quantiza-
tion condition on periods. If we further assume X = R4, the quantization
condition is empty, and the partition function can be written as

Z =

∫

DFDB exp

(

−SE + i

∫

X

B ∧ dF

)

.

Here the new field B is a 1-form on X introduced so that integration over
it produces the delta-functional δ(dF ) =

∏

x∈X δ(dF (x)). This allows us to
integrate over all (not necessarily closed) 2-forms F .

Now we can do the integral over F using the fact that it is a Gaussian
integral. The result is

Z =

∫

DB exp

(

−
1

2ê2

∫

X

G ∧ ⋆G+
iθ̂

8π2

∫

X

G ∧G

)

,

where G = dB, and the parameters ê2 and θ̂ are defined by

θ̂

2π
+

2πi

ê2
= −

(

θ

2π
+

2πi

e2

)−1

.

We see that the partition function written as an integral over B has exactly
the same form as the partition function written as an integral over A, but
with e2 and θ replaced with ê2 and θ̂. This is a manifestation of electric-
magnetic duality. To see this more clearly, note that for θ = 0 the equations
of motion for F deduced from the action

SE(F ) − i

∫

X

B ∧ dF

reads
F = ie2 ⋆ G.
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The factor i arises because of Riemannian signature of the metric; in Loren-
zian signature similar manipulations would produce an identical formula but
without i.

The above derivation of electric-magnetic duality is valid only when X
is topologically trivial. If H2(X) 6= 0, we have to insert additional delta-
functions in the path-integral for F and B ensuring that the periods of F
are properly quantized. It turns out that the effect of these delta-functions
can be reproduced by letting B to be a connection 1-form on an arbitrary
principal U(1) bundle Ê over X and summing over all possible Ê. For a
proof valid for general 4-manifolds X see [8].

We see from this derivation that duality acts nontrivially on the coupling
e2 and the parameter θ. To describe this action, it is convenient to introduce
a complex parameter τ taking values in the upper half-plane:

τ =
θ

2π
+

2πi

e2
.

Then electric-magnetic duality acts by

τ → −1/τ.

Note that the transformation τ → τ+1 or equivalently the shift θ → θ+2π
is also a symmetry of the theory if X is spin. Indeed, θ enters the action as
the coefficient of the topological term

−
i

2
c21,

where c1 is the first Chern class of E. If X is spin, the square of any integral
cohomology class is divisible by two, and so the above topological term is
i times an integer. This immediately implies that shifting θ by 2π leaves
e−SE unchanged. (For arbitrary X the transformation τ → τ + 2 is still a
symmetry.)

The transformations τ → −1/τ and τ → τ + 1 generated the whole
group of integral fractional-linear transformations acting on the upper half-
plane, i.e. the group PSL(2,Z). Points in the upper half-plane related by
the PSL(2,Z) give rise to isomorphic theories. One may call this group
the duality group. Actually, it is better to reserve this name for its “double-
cover” SL(2,Z), since applying the electric-magnetic duality twice acts by −1
on the 2-form F . In this lectures we will mostly focus on electric-magnetic
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duality, which is a particular element of SL(2,Z). It is also known as S-
duality. Note that for θ = 0 S-duality exchanges weak coupling (e2 ≪ 1) and
strong coupling (e2 ≫ 1). This does not cause problems in the abelian case,
because we can solve the U(1) gauge theory for any value of the coupling.
But it will greatly complicate the matters in the nonabelian case, where the
theory is only soluble for small e2.

3 Montonen-Olive Duality

Now let us try to generalize the above considerations to a nonabelian gauge
theory, also known as Yang-Mills theory. The basic field is a connection
A = Aµdx

µ on a principal G-bundle E over a four-dimensional manifold
X. The four-manifold X is equipped with a Lorenzian metric g, and the
equations of motion read

dAF = 0, dA ⋆ F = 0,

where F = dA + A ∧ A ∈ Ω2(ad(E)) is the curvature of A, dA is the covari-
ant differential, and ⋆ is the Hodge star operator on X. The first of these
equations is satisfied identically, while the second one follows from varying
the Yang-Mills action

S(A) =

∫

X

(

1

2e2
TrF ∧ ⋆F +

θ

8π2
TrF ∧ F

)

The corresponding Euclidean action is

SE(A) =

∫

X

(

1

2e2
TrF ∧ ⋆F − i

θ

8π2
TrF ∧ F

)

The action has two real parameters, e and θ. Neither of them affects the
classical equations of motion, but they do affect the quantized Yang-Mills
theory. On the quantum level one should consider a path integral

Z =
∑

E

∫

DA e−SE(A), (2)

and it does depend on both e and θ.
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For each X the path-integral (2) is a single function of e2 and θ and so
is not very informative (it is known as the partition function of Yang-Mills
theory). More generally, one can consider path-integrals of the form

∑

E

∫

DA e−SE(A)O1(A)O2(A) . . .Ok(A),

where O1, . . . ,Ok are gauge-invariant functions of A called observables. Such
a path-integral is called a correlator of observables O1, . . . ,Ok and denoted

〈O1 . . .Ok〉.

An example of an observable in Yang-Mills theory is

O(A) = WR(γ) = TrR(Holγ(A)),

where γ is a closed curve inX, Holγ(A) is the holonomy of A along γ, and R is
an irreducible representation of G. Such observables are called Wilson loops
[9]; they play an important role in the geometric Langlands duality, as we
will see below. From the physical viewpoint, inserting WR(γ) into the path-
integral corresponds to inserting an electrically charged source (“quark”) in
the representation R whose worldline is γ. In semiclassical Yang-Mills theory,
such a source creates a Coulomb-like field of the form

Aa
0 = T a e2

4πr

where T a, a = 1, dimG, are generators of G in representation R. Here we
took X = R × R3, r is the distance from the origin in R3, and we assumed
that the worldline of the source is given by r = 0.

In the case G = U(1), we saw that the theory enjoys a symmetry which
in Lorenzian signature acts by

F → F̂ = e2 ⋆ F, τ → τ̂ = −1/τ.

At first sight, it seems unlikely that such a duality could extend to a theory
with a nonabelian gauge group, since equations of motion explicitly depend
on A, not just on F . The first hint in favor of a nonabelian generalization
of electric-magnetic duality was the work of Goddard, Nuyts, and Olive [3].
They noticed that magnetic sources in a nonabelian Yang-Mills theory are
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labeled by irreducible representations of a different group which they called
the magnetic gauge group. As a matter of fact, the magnetic gauge group
coincides with the Langlands dual of G, so we will denote it LG. A static
magnetic source in Yang-Mills theory should create a field of the form

F = ⋆3 d
( µ

2r

)

,

where µ is an element of the Lie algebra g of G defined up to adjoint action
of G, and ⋆3 is the Hodge star operator on R3. Goddard, Nuyts, and Olive
showed that µ is “quantized”. More precisely, using gauge freedom one can
assume that µ lies in a particular Cartan subalgebra t of g, and then it turns
out that µ must lie in the coweight lattice of G, which, by definition, is the
same as the weight lattice of LG.1 Furthermore, µ is defined up to an action
of the Weyl group, so possible values of µ are in one-to-one correspondence
with highest weights of LG.

On the basis of this observation, C. Montonen and D. Olive [4] conjectured
that Yang-Mills theories with gauge groups G and LG are isomorphic on the
quantum level, and that this isomorphism exchanges electric and magnetic
sources. Thus the Montonen-Olive duality is a nonabelian version of electric-
magnetic duality in Maxwell theory.

In order for the energy of electric and magnetic sources to transform
properly under MO duality, one has to assume that for θ = 0 the dual gauge
coupling is

ê2 =
16π2ng

e2
. (3)

Here the integer ng is 1, 2, or 3 depending on the maximal multiplicity of
edges in the Dynkin diagram of g [10, 11]; for simply-laced groups ng = 1.
This means that MO duality exchanges weak coupling (e → 0) and strong
coupling (e → ∞). For this reason, it is extremely hard to prove the MO
duality conjecture. For general θ, we define

τ =
θ

2π
+

4πi

e2
.

(The slight difference in the definition of τ compared to the nonabelian case
is due to a different normalization of the Killing metric on the Lie algebra.)

1The coweight lattice of G is defined as the lattice of homomorphisms from U(1) to a
maximal torus T of G. The weight lattice of G is the lattice of homomorphisms from T

to U(1).
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The parameter τ takes values in the upper half-plane and under MO duality
transforms as

τ → τ̂ = −
1

ngτ
(4)

The Yang-Mills theory has another, much more elementary symmetry,
which does not change the gauge group:

τ → τ + k.

Here k is an integer which depends on the geometry ofX andG. For example,
if X = R4, then k = 1 for all G. Together with the MO duality, these
transformations generate some subgroup of SL(2,R). In what follows we
will mostly set θ = 0 and will discuss only the Z4 subgroup generated by the
MO duality.

To summarize, if the MO duality were correct, then the partition function
would satisfy

Z(X,G, τ) = Z(X, LG,−
1

ngτ
)

Of course, the partition function is not a very interesting observable. Isomor-
phism of two quantum field theories means that we should be able to match
all observables in the two theories. That is, for any observable O in the gauge
theory with gauge group G we should be able to construct an observable Õ
in the gauge theory with gauge group LG so that all correlators agree:

〈O1 . . . On〉X,G,τ = 〈Õ1 . . . Õn〉X,LG,−1/(ngτ)

At this point I should come clean and admit that the MO duality as
stated above is not correct. The most obvious objection is that the parame-
ters e and ê are renormalized, and the relation like (3) is not compatible with
renormalization. However, it was pointed out later by Osborn [5] (who was
building on the work of Witten and Olive [12]) that the duality makes much
more sense in N = 4 super-Yang-Mills theory. This is a maximally super-
symmetric extension of Yang-Mills theory in four dimensions, and it has a
remarkable property that the gauge coupling is not renormalized at any order
in perturbation theory. Furthermore, Osborn was able to show that certain
magnetically-charged solitons in N = 4 SYM theory have exactly the same
quantum numbers as gauge bosons. (The argument assumes that the vac-
uum breaks spontaneously the gauge group G down to its maximal abelian
subgroup, so that both magnetically charged solitons and the corresponding
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gauge bosons are massive). Later strong evidence in favor of the MO duality
for N = 4 SYM was discovered by A. Sen [13] and C. Vafa and E. Witten
[14]. Nowadays MO duality is often regarded as a consequence of string du-
alities. One particular derivation which works for all G is explained in [15].
Nevertheless, the MO duality is still a conjecture, not a theorem. In what
follows we will assume its validity and deduce from it the main statements
of the Geometric Langlands Program.

Apart from the connection 1-form A, N = 4 SYM theory contains six
scalar fields φi, i = 1, . . . , 6, which are sections of ad(E), four spinor fields
λ̄a, a = 1, . . . , 4, which are sections of ad(E) ⊗ S− and four spinor fields
λa, a = 1, . . . , 4 which are sections of ad(E) ⊗ S+. Here S± are the two
spinor bundles over X. The fields A and φi are bosonic (even), while the
spinor fields are fermionic (odd). In Minkowski signature the fields λ̄a and
λa are complex-conjugate, but in Euclidean signature they are independent.

The action of N = 4 SYM theory has the form

SN=4 = SY M +
1

e2

∫

X

(

∑

i

TrDφi ∧ ⋆Dφi + volX
∑

i<j

Tr[φi, φj]2

)

+ . . .

where dots denote terms depending on the fermions. The action has Spin(6) ≃
SU(4) symmetry under which the scalars φi transform as a vector, the fields
λa transform as a spinor, and λ̄a transform as the dual spinor. This sym-
metry is present for any Riemannian X and is known as the R-symmetry.
If X is R4 with a flat metric, the action also has translational and rota-
tional symmetries, as well as sixteen supersymmetries Q̄aα and Qa

α̇, where
a = 1, . . . , 4 and the Spin(4) spinor indices α and α̇ run from 1 to 2. As is
clear from the notation, Q̄a and Qa transform as spinors and dual spinors
of the R-symmetry group Spin(6); they also transform as spinors and dual
spinors of the rotational group Spin(4).

One can show that under the MO duality all bosonic symmetry generators
are mapped trivially, while supersymmetry generators are multiplied by a τ -
dependent phase:

Q̄a → eiφ/2Q̄a, Qa → e−iφ/2Qa, eiφ =
|τ |

τ

This phase will play an important role in the next section.
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4 Twisting N = 4 super-Yang-Mills theory

In order to extract mathematical consequences of MO duality, we are going
to turn N = 4 SYM theory into a topological field theory. The procedure for
doing this is called topological twisting [16].

Topological twisting is a two-step procedure. On the first step, one
chooses a homomorphism ρ from Spin(4), the universal cover of the structure
group of TX, to the R-symmetry group Spin(6). This enables one to rede-
fine how fields transform under Spin(4). The choice of ρ is constrained by
the requirement that after this redefinition some of supersymmetries become
scalars, i.e. transform trivially under Spin(4). Such supersymmetries survive
when X is taken to be an arbitrary Riemannian manifold. In contrast, if we
consider ordinary N = 4 SYM on a curved X, it will have supersymmetry
only if X admits a covariantly constant spinor.

It is easy to show that there are three inequivalent choices of ρ satisfy-
ing these constraints [14]. The one relevant for the Geometric Langlands
Program is identifies Spin(4) with the obvious Spin(4) subgroup of Spin(6).
After redefining the spins of the fields accordingly, we find that one of the
left-handed supersymmetries and one of the right-handed supersymmetries
become scalars. We will denote them Ql and Qr respectively.

On the second step, one notices that Ql and Qr both square to zero and
anticommute (up to a gauge transformation). Therefore one may pick any
linear combination of Ql and Qr

Q = uQl + vQr,

and declare it to be a BRST operator. That is, one considers only observables
which are annihilated by Q (and are gauge-invariant) modulo those which
are Q-exact. This is consistent because any correlator involving Q-closed
observables, one of which is Q-exact, vanishes. From now on, all observables
are assumed to be Q-closed. Correlators of such observables will be called
topological correlators.

Clearly, the theory depends on the complex numbers u, v only up to an
overall scaling. Thus we get a family of twisted theories parameterized by
the projective line P1. Instead of the homogenous coordinates u, v, we will
mostly use the affine coordinate t = v/u which takes values in C ∪ {∞}.
All these theories are diffeomorphism-invariant, i.e. do not depend on the
Riemannian metric. To see this, one writes an action (which is independent
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of t) in the form

I = {Q, V } +
iΨ

4π

∫

X

TrF ∧ F

where V is a gauge-invariant function of the fields, and Ψ is given by

Ψ =
θ

2π
+
t2 − 1

t2 + 1

4πi

e2

All the metric dependence is in V , and since changing V changes the action
by Q-exact terms, we conclude that topological correlators are independent
of the metric.

It is also apparent that for fixed t topological correlators are holomorphic
functions of Ψ, and this dependence is the only way e2 and θ may enter. In
particular, for t = i we have Ψ = ∞, independently of e2 and θ. This means
that for t = i topological correlators are independent of e2 and θ.

To proceed further, we need to describe the field content of the twisted
theory. Since the gauge field A is invariant under Spin(6) transformations,
it is not affected by the twist. As for the scalars, four of them become
components of a 1-form φ with values in ad(E), and the other two remain
sections of ad(E); we may combine the latter into a complex scalar field σ
which is a section of the complexification of ad(E). The fermionic fields in
the twisted theory are a pair of 1-forms ψ and ψ̃, a pair of 0-forms η and η̃,
and a 2-form χ, all taking values in the complexification of ad(E).

What makes the twisted theory manageable is that the path integral lo-
calizes on Q-invariant field configurations. One way to deduce this property
is to note that as a consequence of metric-independence, semiclassical (WKB)
approximation is exact in the twisted theory. Thus the path-integral local-
izes on absolute minima of the Euclidean action. On the other hand, such
configurations are exactly Q-invariant configurations.

The condition of Q-invariance is a set of partial differential equations on
the bosonic fields A, φ and σ. We will only state the equations for A and φ,
since the equations for σ generically imply that σ = 0:

(F − φ ∧ φ+ tDφ)+ = 0, (F − φ ∧ φ− t−1Dφ)− = 0, D ⋆ φ = 0. (5)

Here subscripts + and − denote self-dual and anti-self-dual parts of a 2-form.
If t is real, these equations are elliptic. A case which will be of special

interest is t = 1; in this case the equations can be rewritten as

F − φ ∧ φ+ ⋆Dφ = 0, D ⋆ φ = 0.
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They resemble both the Hitchin equations in 2d [17] and the Bogomolny equa-
tions in 3d [18] (and reduce to them in special cases). The virtual dimension
of the moduli space of these equations is zero, so the partition function is the
only nontrivial observable if X is compact without boundary. However, for
applications to the Geometric Langlands Program it is important to consider
X which are noncompact and/or have boundaries.

Another interesting case is t = i. To understand this case, it is conve-
nient to introduce a complex connection A = A+ iφ and the corresponding
curvature F = dA + A2. Then the equations are equivalent to

F = 0, D ⋆ φ = 0.

The first of these equations is invariant under the complexified gauge trans-
formations, while the second one is not. It turns out that the moduli space
is unchanged if one drops the second equation and considers the space of
solutions of the equation F = 0 modulo GC gauge transformations. More
precisely, according to a theorem of K. Corlette [19], the quotient by GC

gauge transformations should be understood in the sense of Geometric In-
variant Theory, i.e. one should distinguish stable and semistable solutions of
F = 0 and impose a certain equivalence relation on semistable solutions. The
resulting moduli space is called the moduli space of stable GC connections on
X and will be denoted Mflat(G,X). Thus for t = i the path integral of the
twisted theory reduces to an integral over Mflat(G,X). This is an indication
that twisted N = 4 SYM with gauge group G has something to do with the
study of homomorphisms from π1(X) to GC.

Finally, let us discuss how MO duality acts on the twisted theory. The key
observation is that MO duality multiplies Ql and Qr by e±iφ/2, and therefore
multiplies t by a phase:

t 7→
|τ |

τ
t.

Since Imτ 6= 0, the only points of the P1 invariant under the MO duality
are the “poles” t = 0 and t = ∞. On the other hand, if we take t = i and
θ = 0, then the MO duality maps it to a theory with t = 1 and θ = 0 (it also
replaces G with LG). As we will explain below, it is this special case of the
MO duality that gives rise to the Geometric Langlands Duality.
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5 Reduction to two dimensions

From now on we specialize to the case X = Σ × C where C and Σ are
Riemann surfaces. We will assume that C has no boundary and has genus
g > 1, while Σ may have a boundary. In our discussion we will mostly work
locally on Σ, and its global structure will be unimportant.

Topological correlators are independent of the volumes of C and Σ. How-
ever, to exploit localization, it is convenient to consider the limit in which
the volume of C goes to zero. In the spirit of the Kaluza-Klein reduction,
we expect that in this limit the 4d theory becomes equivalent to a 2d the-
ory on Σ. In the untwisted theory, this equivalence holds only in the limit
vol(C) → 0, but in the twisted theory the equivalence holds for any volume.

It is easy to guess the effective field theory on Σ. One begins by consider-
ing the case Σ = R2 and requiring the field configuration to be independent
of the coordinates on Σ and to have zero energy. On can show that a generic
such configuration has σ = 0, while φ and A are pulled-back from C and
satisfy

F − φ ∧ φ = 0, Dφ = 0, D ⋆ φ = 0.

Here all quantities as well as the Hodge star operator refer to objects living
on C. These equations are known as Hitchin equations [17], and their space
of solutions modulo gauge transformations is called the Hitchin moduli space
MH(G,C). The space MH(G,C) is a noncompact manifold of dimension
4(g − 1) dimG with singularities.2 From the physical viewpoint, MH(G,C)
is the space of classical vacua of the twisted N = 4 SYM on C × R2.

In the twisted theory, only configurations with vanishingly small energies
contribute. In the limit vol(C) → 0, such configurations will be represented
by slowly varying maps from Σ to MH(G,C). Therefore we expect the effec-
tive field theory on Σ to be a topological sigma-model with target MH(G,C).

Before we proceed to identify more precisely this topological sigma-model,
let us note that MH(G,C) has singularities coming from solutions of Hitchin
equations which are invariant under a subgroup of gauge transformations. In
the neighborhood of such a classical vacuum, the effective field theory is not
equivalent to a sigma-model, because of unbroken gauge symmetry. In fact,
it is difficult to describe the physics around such vacua in purely 2d terms.
We will avoid this difficulty by imposing suitable conditions on the boundary
of Σ ensuring that we stay away from such dangerous points.

2We assumed g > 1 precisely to ensure that virtual dimension of MH(G, C) is positive.
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The most familiar examples of topological sigma-models are A and B-
models associated to a Calabi-Yau manifold M [20]. Both models are ob-
tained by twisting a supersymmetric sigma-model with target M . The path-
integral of the A-model localizes on holomorphic maps from Σ to M and
computes the Gromov-Witten invariants of M . The path-integral for the
B-model localizes on constant maps to M and can be interpreted mathemat-
ically in terms of deformation theory of M regarded as a complex manifold
[21]. Both models are topological field theories (TFTs), in the sense that
correlators do not depend on the metric on Σ. In addition, the A-model
depends on the symplectic structure of M , but not on its complex structure,
while the B-model depends on the complex structure of M , but not on its
symplectic structure.

As explained above, we expect that our family of 4d TFTs, when consid-
ered on a 4-manifold of the form Σ × C, becomes equivalent to a family of
topological sigma-models with target MH(G,C). To connect this family to
ordinary A and B-models, we note that MH(G,C) is a (noncompact) hyper-
Kähler manifold. That is, it has a P1 worth of complex structures compatible
with a certain metric. This metric has the form

ds2 =
1

e2

∫

C

Tr (δA ∧ ⋆δA+ δφ ∧ ⋆δφ)

where (δA, δφ) is a solution of the linearized Hitchin equations representing
a tangent vector to MH(G,C).3 If we parameterize the sphere of complex
structures by a parameter w ∈ C∪{∞}, the basis of holomorphic differentials
is

δAz̄ − w δφz̄, δAz + w−1δφz.

By varying w, we get a family of B-models with target MH(G,C). Similarly,
since for each w we have the corresponding Kähler form on MH(G,C), by
varying w we get a family of A-models with target MH(G,C). However, the
family of topological sigma-models obtained from the twisted N = 4 SYM
does not coincide with either of these families. The reason for this is that a
generic A-model or B-model with target MH(G,C) depends on the complex
structure on C, and therefore cannot arise from a TFT on Σ × C.

As explained in [6], this puzzle is resolved by recalling that for a hyper-
Kähler manifold M there are twists other than ordinary A or B twists. In

3The overall normalization of the metric we use is natural from the point of view of
gauge theory.

15



general, twisting a supersymmetric sigma-model requires picking two com-
plex structures on the target. If we are given a Kähler structure on M , one
can choose the two complex structures to be the same (B-twist) or opposite
(A-twist). But for a hyper-Kähler manifold there is a whole sphere of com-
plex structures, and by independently varying the two complex structures
one gets P1 ×P1 worth of 2d TFTs. They are known as generalized topolog-
ical sigma-models, since their correlators depend on a generalized complex
structure on the target M [22, 23]. The notion of a generalized complex
structure was introduced by N. Hitchin [24] and it includes complex and
symplectic structures are special cases.

It turns out that for M = MH(G,C) there is a 1-parameter subfamily of
this 2-parameter family of topological sigma-models which does not depend
on the complex structure or Kähler form of C. It is this subfamily which
appears as a reduction of the twisted N = 4 SYM theory. Specifically, the
two complex structures on MH(G,C) are given by

w+ = −t, w− = t−1

Note that one gets a B-model if and only if w+ = w−, i.e. if t = ±i. One
gets an A-model if and only if t is real. All other values of t correspond to
generalized topological sigma-models.

Luckily to understand Geometric Langlands Duality we mainly need the
two special cases t = i and t = 1. The value t = i corresponds to a B-model
with complex structure J defined by complex coordinates

Az + iφz, Az̄ + iφz̄

on MH(G,C). These are simply components of the complex connection
A = A + iφ along C. In terms of this complex connection two out of three
Hitchin equations are equivalent to

F = dA + A2 = 0

This equation is invariant under complexified gauge transformations. The
third equation D ⋆ φ = 0 is invariant only under G gauge transformations.
By a theorem of S. Donaldson [25], one can drop this equation at the expense
of enlarging the gauge group from G to GC.(More precisely, one also has to
identify certain semistable solutions of the equation F = 0.) This is analo-
gous to the situation in four dimensions. Thus in complex structure J the
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moduli space MH(G,C) can be identified with the moduli space Mflat(G,C)
of stable flat GC connections on C. It is apparent that J is independent of
the complex structure on C, which implies that the B-model at t = i is also
independent of it.

The value t = 1 corresponds to an A-model with a symplectic structure
ω = 4πωK/e

2, where

ωK = −
1

2π

∫

C

Tr δφ ∧ δA.

It is a Kähler form of a certain complex structure K on MH(G,C). Note
that ωK is exact and independent of the complex structure on C.

Yet another complex structure on MH(G,C) is I = JK. It will make
an appearance later, when we discuss Homological Mirror Symmetry for
MH(G,C). In this complex structure, MH(G,C) can be identified with the
moduli space of stable holomorphic Higgs bundles. Recall that a (holomor-
phic) Higgs bundle over C (with gauge group G) is a holomorphic G-bundle
E over C together with a holomorphic section ϕ of ad(E). In complex di-
mension one, any principal G bundle can be thought of as a holomorphic
bundle, and Hitchin equations imply that ϕ = φ1,0 satisfies

∂̄ϕ = 0.

This gives a map from MH(G,C) to the set of gauge-equivalence classes
of Higgs bundles. This map becomes one-to-one if we limit ourselves to
stable or semistable Higgs bundles and impose a suitable equivalence rela-
tionship on semistable ones. This gives an isomorphism between MH(G,C)
and MHiggs(G,C).

It is evident that the complex structure I, unlike J , does depend on the
choice of complex structure on C. Therefore the B-model for the moduli
space of stable Higgs bundles cannot be obtained as a reduction of a 4d
TFT.4 On the other hand, the A-model for MHiggs(G,C) is independent of
the choice of complex structure on C, because the Kähler form ωI is given
by

ωI =
1

4π

∫

C

Tr (δA ∧ δA− δφ ∧ δφ).

In fact, the A-model for MHiggs(G,C) is obtained by letting t = 0. This
special case of reduction to 2d has been first discussed in [27].

4It can be obtained as a reduction of a “holomorphic-topological” gauge theory on
Σ × C [26].
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6 Mirror Symmetry for the Hitchin moduli

space

Now we are ready to infer the consequences of the MO duality for the topo-
logical sigma-model with target MH(G,C). For θ = 0, the MO duality
identifies twisted N = 4 SYM theory with gauge group LG and t = i with
a similar theory with gauge group G and t = 1. Therefore the B-model
with target Mflat(

LG,C) and the A-model with target (M(G,C), ωK) are
isomorphic.

Whenever we have two Calabi-Yau manifolds M and M ′ such that the
A-model of M is equivalent to the B-model of M ′, we say that M and M ′ are
a mirror pair. Thus MO duality implies that Mflat(

LG,C) and MH(G,C)
(with the symplectic structure ωK) are a mirror pair. This mirror symmetry
was first proposed in [28].

The most obvious mathematical interpretation of this statement involves
the isomorphism of two Frobenius manifolds associated to the A-model of
(MH(G,C), ωK) and the B-model of Mflat(

LG,C). The former of these
encodes the Gromov-Witten invariants of MH(G,C), while the latter one
has to to with the complex structure deformations of Mflat(

LG,C). But one
can get a much stronger statement by considering the categories of topological
D-branes associated to the two models.

Recall that a topological D-brane for a 2d TFT is a BRST-invariant
boundary condition for it. The set of all topological D-branes has a natural
structure of a category (actually, an A∞ category). For a B-model with
a Calabi-Yau target M , this category is believed to be equivalent to the
derived category of coherent sheaves on M . Sometimes we will also refer to
it as the category of B-branes on M . For an A-model with target M ′, we
get a category of A-branes on M ′. It contains the derived Fukaya category
of M ′ as a full subcategory. For a review of these matters, see e.g. [29].

It has been argued by A. Strominger, S-T. Yau and E. Zaslow (SYZ)
[30] that whenever M and M ′ are mirror to each other, they should admit
Lagrangian torus fibrations over the same base B, and these fibrations are
dual to each other, in a suitable sense. In the case of Hitchin moduli spaces,
the SYZ fibration is easy to identify [6]. One simply maps a solution (A, φ)
of the Hitchin equations to the space of gauge-invariant polynomials built
from ϕ = φ1,0. For example, for G = SU(N) or G = SU(N)/ZN the algebra
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of gauge-invariant polynomials is generated by

Pn = Trϕn ∈ H0(C,Kn
C), n = 2, . . . , N,

so the fibration map maps MH(G,C) to the vector space

⊕N
n=2H

0(C,Kn
C).

The map is surjective [31], so this vector space is the base space B. The map
to B is known as the Hitchin fibration of MH(G,C). It is holomorphic in
complex structure I and its fibers are Lagrangian in complex structures J
andK. In fact, one can regard MHiggs(G,C) as a complex integrable system,
in the sense that the generic fiber of the fibration is a complex torus which is
Lagrangian with respect to a holomorphic symplectic form on MHiggs(G,C)

ΩI = ωJ + iωK .

(Ordinarily, an integrable system is associated with a real symplectic mani-
fold with a Lagrangian torus fibration.)

For generalG one can define the Hitchin fibration in a similar way, and one
always finds that the generic fiber is a complex Lagrangian torus. Moreover,
the bases B and LB of the Hitchin fibrations for MH(G,C) and MH(LG,C)
are naturally identified.5

While the Hitchin fibration is an obvious candidate for the SYZ fibration,
can we prove that it really is the SYZ fibration? It turns out this statement
can be deduced from some additional facts about MO duality.

While we do not know how the MO duality acts on general observables in
the twisted theory, the observables Pn are an exception, as their expectation
values parameterize the moduli space of vacua of the twisted theory on X =
R4. The MO duality must identify the moduli spaces of vacua, in a way
consistent with other symmetries of the theory, and this leads to a unique
identification of the algebras generated by Pn for G and LG. See [6] for
details.

To complete the argument, we need to consider some particular topolog-
ical D-branes for MH(G,C) and MH(LG,C). The simplest example of a
B-brane on Mflat(

LG,C) is the structure sheaf of a (smooth) point. What is
its mirror? Since each point p lies in some fiber LFp of the Hitchin fibration,

5In some cases G and LG coincide, but the relevant identification is not necessarily the
identity map [11, 6].

19



its mirror must be an A-brane on MH(G,C) localized on the corresponding
fiber Fp of the Langlands-dual fibration. By definition, this means that the
Hitchin fibration is the same as the SYZ fibration.

According to Strominger, Yau, and Zaslow, the fibers of the two mirror
fibrations over the same base point are T-dual to each other. Indeed, by
the usual SYZ argument the A-brane on Fp must be a rank-one object of
the Fukaya category, i.e. a flat unitary rank-1 connection on a topologically
trivial line bundle over Fp. The moduli space of such objects must coincide
with the moduli space of the mirror B-brane, which is simply LFp. This is
precisely what we mean by saying that that LFp and Fp are T-dual.

In the above discussion we have tacitly assumed that both MH(G,C)
and MH(LG,C) are connected. The components of MH(G,C) are labeled
by the topological isomorphism classes of principal G-bundles over C, i.e. by
elements of H2(C, π1(G)) = π1(G). Thus, strictly speaking, our discussion
applies literally only when both G and LG are simply-connected. This is
rarely true; for example, among compact simple Lie groups only E8, F4 and
G2 satisfy this condition (all these groups are self-dual).

In general, to maintain mirror symmetry between MH(G,C) and MH(LG,C),
one has to consider all possible flat B-fields on both manifolds. A flat B-field
onM is a class inH2(M,U(1)) whose image inH3(M,Z) under the Bockstein
homomorphism is trivial. In the case of MH(G,C), the allowed flat B-fields
have finite order; in fact, they take values in H2(C,Z(G)) = Z(G), where
Z(G) is the center of G. It is well known that Z(G) is naturally isomorphic
to π1(

LG). One can show that MO duality maps the class w ∈ Z(G) defining
the B-field on MH(G,C) to the corresponding element in π1(

LG) labeling
the connected component of MH(LG,C) (and vice versa). For example, if
G = SU(N), then MH(G,C) is connected and has N possible flat B-fields
labeled by Z(SU(N)) = ZN . On the other hand, LG = SU(N)/ZN , and
therefore MH(LG,C) has N connected components labeled by π1(

LG) = ZN .
There can be no nontrivial flat B-field on MH(LG,C) in this case. See section
7 of [6] for more details.

Let us summarize what we have learned so far. MO duality implies that
MH(G,C) and MH(LG,C) are a mirror pair, with the SYZ fibrations being
the Hitchin fibrations. The most powerful way to formulate the statement
of mirror symmetry between two Calabi-Yau manifolds is in terms of the
corresponding categories of topological branes. In the present case, we get
that the derived category of coherent sheaves on Mflat(

LG,C) is equivalent
to the category of A-branes on MH(G,C) (with respect to the exact sym-
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plectic form ωK). Furthermore, this equivalence maps a (smooth) point p
belonging to the fiber LFp of the Hitchin fibration of Mflat(

LG,C) to the
Lagrangian submanifold of MH(G,C) given by the corresponding fiber of the
dual fibration of MH(G,C). The flat unitary connection on Fp is determined
by the position of p on LFp.

6

7 From A-branes to D-modules

Geometric Langlands Duality says that the derived category of coherent
sheaves on Mflat(

LG,C) is equivalent to the derived category of D-modules
on the moduli stack BunG(C) of holomorphic G-bundles on C. This equiva-
lence is supposed to map a point on Mflat(

LG,C) to a Hecke eigensheaf on
BunG(C). We have seen that MO duality implies a similar statement, with
A-branes on MH(G,C) taking place of objects of the derived category of
D-modules on BunG(C). Our first goal is to explain the connection between
A-branes on MH(G,C) and D-modules on BunG(C). Later we will see how
the Hecke eigensheaf condition can be interpreted in terms of A-branes.

The starting point of our argument is a certain special A-brane on MH(G,C)
which was called the canonical coisotropic brane in [6]. Recall that a sub-
manifold Y of a symplectic manifold M is called coisotropic if for any p ∈ Y
the skew-complement of TYp in TMp is contained in TYp. A coisotropic
submanifold of M has dimension larger or equal than half the dimension of
M ; a Lagrangian submanifold of M can be defined as a middle-dimensional
coisotropic submanifold. While the most familiar examples of A-branes are
Lagrangian submanifolds equipped with flat unitary vector bundles, it is
known from the work [32] that the category of A-branes may contain more
general coisotropic submanifolds with non-flat vector bundles. (Because of
this, in general the Fukaya category is only a full subcategory of the cate-
gory of A-branes.) The conditions on the curvature of a vector bundle on
a coisotropic A-brane are not understood except in the rank-one case; even
in this case they are fairly complicated [32]. Luckily, for our purposes we
only need the special case when Y = M and the vector bundle has rank one.
Then the condition on the curvature 2-form F ∈ Ω2(M) is

(ω−1F )2 = −1. (6)

6This makes sense only if L
Fp is smooth. If p is a smooth point but L

Fp is singular, it
is not clear how to identify the mirror A-brane on MH(G, C).
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Here we regard both F and the symplectic form ω as bundle morphisms from
TM to T ∗M , so that IF = ω−1F is an endomorphism of TM .

The condition (6) says that IF is an almost complex structure. Using the
fact that ω and F are closed 2-forms, one can show that IF is automatically
integrable [32].

Let us now specialize to the case M = MH(G,C) with the symplectic
form ω = 4πωK/e

2. Then if we let

F =
4π

e2
ωJ =

2

e2

∫

C

Tr δφ ∧ ⋆δA,

the equation is solved, and

IF = ω−1
K ωJ = I.

Furthermore, since F is exact:

F ∼ δ

∫

C

Trφ ∧ ⋆δA,

we can regard F as the curvature of a unitary connection on a trivial line bun-
dle. This connection is defined uniquely if MH(G,C) is simply connected;
otherwise any two such connections differ by a flat connection. One can show
that flat U(1) connections on a connected component of MH(G,C) are clas-
sified by elements of H1(C, π1(G)) [6]. Thus we obtain an almost canonical
coisotropic A-brane on MH(G,C): it is unique up to a finite ambiguity, and
its curvature is completely canonical.

Next we need to understand the algebra of endomorphisms of the canon-
ical coisotropic brane. From the physical viewpoint, this is the algebra of
vertex operators inserted on the boundary of the worldsheet Σ; such vertex
operators are usually referred to as open string vertex operators (as opposed
to closed string vertex operators which are inserted at interior points of Σ).

In the classical limit, BRST-invariant vertex operators of ghost number
zero are simply functions on the target X holomorphic in the complex struc-
ture IF = ω−1F [32]. In the case of the canonical coisotropic A-brane, the
target X = MH(G,C) in complex structure IF = I is isomorphic to the
moduli space of Higgs bundles on C. BRST-invariant vertex operators of
higher ghost number can be identified with the Dolbeault cohomology of the
moduli space of Higgs bundles.
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Actually, the knowledge of the algebra turns out to be insufficient: we
would like to work locally in the target space MH(G,C) and work with a
sheaf of open string vertex operators on MH(G,C). The idea of localizing
in target space has been previously used by F. Malikov, V. Schechtman and
A. Vaintrob to define the chiral de Rham complex [33]; we need an open-
string version of this construction.

Localizing the path-integral in target space makes sense only if nonper-
turbative effects can be neglected [34, 35]. The reason is that perturbation
theory amounts to expanding about constant maps from Σ to M , and there-
fore the perturbative correlator is an integral over M of a quantity whose
value at a point p ∈ M depends only of the infinitesimal neighborhood of
p. In such a situation it makes sense to consider open-string vertex opera-
tors defined only locally on M , thereby getting a sheaf on M . Because of
the topological character of the theory, the OPE of Q-closed vertex opera-
tors is nonsingular, and Q-cohomology classes of such locally-defined vertex
operators form a sheaf of algebras on M . One difference compared to the
closed-string case is that operators on the boundary of Σ have a well-defined
cyclic order, and therefore the multiplication of vertex operators need not be
commutative. The cohomology of this sheaf of algebras is the endomorphism
algebra of the brane [6].

One can show that there are no nonperturbative contributions to any
correlators involving the canonical coisotropic A-brane [6], and so one can
localize the path-integral in MH(G,C). But a further problem arises: per-
turbative results are formal power series in the Planck constant, and there
is no guarantee of convergence. In the present case, the role of the Planck
constant is played by the parameter e2 in the gauge theory.7 In fact, one can
show that the series defining the multiplication have zero radius of conver-
gence for some locally defined observables.

In order to understand the resolution of this problem, let us look more
closely the structure of the perturbative answer. In the classical approxima-
tion (leading order in e2), the sheaf of open-string states is quasiisomorphic,
as a sheaf of algebras, to the sheaf of holomorphic functions on MHiggs(G,C).
The natural holomorphic coordinates on MHiggs(G,C) are Az̄ and φz. The
algebra of holomorphic functions has an obvious grading in which φz has

7At first sight, the appearance of e2 in the twisted theory may seem surprising, but
one should remember that the argument showing that the theory at t = 1 is independent
of e2 is valid only when the manifold X has no boundary.
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degree 1 and Az̄ has degree 0. Note also that the projection (Az̄, φz) 7→ Az̄

defines a map from MH(G,C) to BunG(C). If we restrict the target of
this map to the subspace of stable G-bundles M(G,C), then the preimage
of M(G,C) in MH(G,C) can be thought of as the cotangent bundle to
M(G,C).

At higher orders, the multiplication of vertex operators becomes noncom-
mutative and incompatible with the grading. However, it is still compati-
ble with the associated filtration. That is, the product of two functions on
MHiggs(G,C) which are polynomials in φz of degrees k and l is a polynomial
of degree k + l. Therefore the product of polynomial observables defined
by perturbation theory is well-defined (it is a polynomial in the Planck con-
stant).

We see that we can get a well-defined multiplication of vertex operators
if we restrict to those which depend polynomially on φz. That is, we have
to “sheafify” our vertex operators only along the base of the projection to
M(G,C), while along the fibers the dependence is polynomial.

Holomorphic functions on the cotangent bundle of M(G,C) polynomially
depending on the fiber coordinates can be thought of as symbols of differen-
tial operators acting on holomorphic functions on M(G,C), or perhaps on
holomorphic sections of a line bundle on M(G,C). One may therefore sus-
pect that the sheaf of open-string vertex operators is isomorphic to the sheaf
of holomorphic differential operators on some line bundle L over M(G,C).
To see how this comes about, we note that the action of the A-model on a
Riemann surface Σ can be written as

S =

∫

Σ

Φ∗(ω − iF ) + BRST − exact terms.

Here Φ is a map from Σ to M(G,C) (the basic field of the sigma-model). In
our case, both ω and F are exact and the integral reduces to the integral over
the boundary of Σ. More precisely, let ΩI denote the holomorphic symplectic
form

ΩI = −
1

π

∫

C

Tr (δφzδAz̄)

on MHiggs(G,C). This form is exact: ΩI = d̟, where

̟ = −
1

π

∫

C

Tr (φzδAz̄) .
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Then the action has the form

S = Im τ

∫

∂Σ

Φ∗̟ + BRST − exact terms.

Next we note that under the birational identification of MHiggs(G,C) with
the cotangent bundle of M(G,C), the form ̟ becomes the canonical holo-
morphic 1-form pdq on the cotangent bundle. Thus the path-integral for the
A-model is very similar to the path-integral of a particle on M(G,C) with the
zero Hamiltonian, with −iImτ playing the role of the inverse Planck constant.
The main difference is that instead of arbitrary functions on the cotangent
bundle in the A-model one only considers holomorphic functions. Otherwise,
quantization proceeds in much the same way, and one finds that the algebra
of vertex operators can be quantized into the algebra of holomorphic differ-
ential operators on M(G,C). Here the usual quantization ambiguity creeps
in: commutation relations

[pi, q
j] = Im τ δj

i , [pi, pj] = [qi, qj ] = 0

can be represented by holomorphic differential operators on an arbitrary
complex power of a holomorphic line bundle on M(G,C). To fix this am-
biguity, one can appeal to the additional discrete symmetry of the problem:
the symmetry under “time-reversal”. This symmetry reverses orientation of
Σ and also multiplies φz by −1. If we want to maintain this symmetry on
the quantum level, we must require that the algebra of vertex operators be
isomorphic to its opposite algebra. It is known that this is true precisely for
holomorphic differential operators on the square root of the canonical line
bundle of M(G,C) [37]. We conclude that the quantized algebra of vertex
operators is isomorphic to the sheaf of holomorphic differential operators on
K1/2, where K is the canonical line bundle on M(G,C).

Now we can finally explain the relation between A-branes and (twisted)
D-modules on M(G,C) ⊂ BunG(C). Given an A-brane β, we can consider
the space of morphisms from the canonical coisotropic brane α to the brane
β. It is a left module over the endomorphism algebra of α. Better still, we can
sheafify the space of morphisms along M(G,C) and get a sheaf of modules
over the sheaf of differential operators on K1/2, where K is the canonical
line bundle of M(G,C). This is the twisted D-module corresponding to the
brane β.

In general it is rather hard to determine the D-module corresponding to
a particular A-brane. A simple case is when β is a Lagrangian submanifold
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defined by the condition φ = 0, i.e. the zero section of the cotangent bundle
M(G,C). In that case, the D-module is simply the sheaf of sections of
K1/2. From this example, one could suspect that the A-brane is simply the
characteristic variety of the corresponding D-module. However, this is not so
in general, since in general A-branes are neither conic nor even holomorphic
subvarieties of MHiggs(G,C). For example, a fiber of the Hitchin fibration Fp

is holomorphic but not conic. It is not clear how to compute the D-module
corresponding to Fp, even when Fp is a smooth fiber.8

We conclude this sections with two remarks. First, the relation between
A-branes is most readily understood if we replace the stack BunG(C) by the
space of stable G-bundles M(G,C). Second, from the physical viewpoint it is
more natural to work directly with A-branes rather than with corresponding
D-modules. In some sense it is also more natural from the mathematical
viewpoint, since both the derived category of Mflat(

LG,C) and the category
of A-branes on MH(G,C) are “topological”, in the sense that they do not
depend on the complex structure on C. The complex structure on C appears
only when we introduce the canonical coisotropic brane (its curvature F
manifestly depends on the Hodge star operator on C).

8 Wilson and ’t Hooft operators

In any gauge theory one can define Wilson loop operators:

TrR P exp

∫

γ

A = TrR (Hol(A, γ)) ,

where R is a finite-dimensional representation of G, γ is a closed loop in
M , and P exp

∫

is simply a physical notation for holonomy. The Wilson
loop is a gauge-invariant function of the connection A and therefore can be
regarded as a physical observable. Inserting the Wilson loop into the path-
integral is equivalent to inserting an infinitely massive particle traveling along
the path γ and having internal “color-electric” degrees of freedom described
by representation R of G. For example, in the theory of strong nuclear
interactions we have G = SU(3), and the effect of a massive quark can
be modeled by a Wilson loop with R being a three-dimensional irreducible
representation. The vacuum expectation value of the Wilson loop can be

8The abelian case G = U(1) is an exception, see [6] for details.
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used to distinguish various massive phases of the gauge theory [9]. Here
however we will be interested in the algebra of Wilson loop operators, which
is insensitive to the long-distance properties of the theory.

The Wilson loop is not BRST-invariant and therefore is not a valid ob-
servable in the twisted theory. But it turns out that for t = ±i there is a
simple modification which is BRST-invariant:

WR(γ) = TrR P exp

∫

γ

(A± iφ) = TrR (Hol(A± iφ), γ))

The reason is that the complex connection A = A ± iφ is BRST-invariant
for these values of t. There is nothing similar for any other value of t.

We may ask how the MO duality acts on Wilson loop operators. The
answer is to a large extent fixed by symmetries, but turns out to be rather
nontrivial [38]. The difficulty is that the dual operator cannot be written as
a function of fields, but instead is a disorder operator. Inserting a disorder
operator into the path-integral means changing the space of fields over which
one integrates. For example, a disorder operator localized on a closed curve γ
is defined by specifying a singular behavior for the fields near γ. The disorder
operator dual to a Wilson loop has been first discussed by G. ’t Hooft [39]
and is defined as follows [38]. Let µ be an element of the Lie algebra g defined
up to adjoint action of G, and let us choose coordinates in the neighborhood
of a point p ∈ γ so that γ is defined by the equations x1 = x2 = x3 = 0.
Then we require the curvature of the gauge field to have a singularity of the
form

F ∼ ⋆3 d
( µ

2r

)

,

where r is the distance to the origin in the 123 hyperplane, and ⋆3 is the
Hodge star operator in the same hyperplane. For t = 1 Q-invariance requires
the 1-form Higgs field φ to be singular as well:

φ ∼
µ

2r
dx4.

One can show that such an ansatz for F makes sense (i.e. one can find a gauge
field whose curvature is F ) if and only if µ is a Lie algebra homomorphism
from R to g obtained from a Lie group homomorphism U(1) → G [3]. To
describe this condition in a more suggestive way, let us use the gauge freedom
to conjugate µ to a particular Cartan subalgebra t of g. Then µ must lie in
the coweight lattice Λcw(G) ⊂ t, i.e. the lattice of homomorphisms from U(1)
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to the maximal torus T corresponding to t. In addition, one has to identify
points of the lattice which are related by an element of the Weyl group W.
Thus ’t Hooft loop operators are classified by elements of Λcw(G)/W. We
will denote the ’t Hooft operator corresponding to the coweight µ as Tµ.

By definition, Λcw(G) is identified with the weight lattice Λw(LG) of LG.
But elements of Λw(LG)/W are in one-to-one correspondence with irreducible
representations of LG. This suggests that MO duality maps the ’t Hooft
operator corresponding to a coweight µ ∈ Λcw(G) to the Wilson operator
corresponding to a representation LR with highest weight in the Weyl orbit
of µ ∈ Λw(LG). This is a reinterpretation of the the Goddard-Nuyts-Olive
argument discussed in section 2 in terms of operators rather than states.

To test this duality, one can compare the algebra of ’t Hooft operators
for gauge group G and Wilson operators for gauge group LG. In the latter
case, the operator product is controlled by the algebra of irreducible repre-
sentations of LG. That is, we expect that as the loop γ′ approaches γ, we
have

WR(γ)WR′(γ′) ∼
⊕

Ri⊂R⊗R′

WRi
(γ),

where R and R′ are irreducible representations of G, and the sum on the
right-hand-side runs over irreducible summands of R⊗ R′.

In the case of ’t Hooft operators the computation of the operator product
is much more nontrivial [6]. We will only sketch the procedure and state
the results. First, one considers the twisted YM theory (at t = 1) on a
4-manifold of the form X = R × I × C, where I is an interval and R is
regarded as the time direction. The computation is local, so one may even
take C = P1. The ’t Hooft operators are located at points on I × C and
extend in the time direction. Their presence modifies the definition and
Hamiltonian quantization of the gauge theory on X. Namely, the gauge field
A and the scalar φ0 have prescribed singularities at points on I × C. Since
the theory is topological, one can take the limit when the volume of C × I
goes to zero; in this limit the theory reduces to a 1d theory: supersymmetric
sigma-model on R whose target is the space of vacua of the YM theory. The
latter space can be obtained by solving BPS equations (5) assuming that
all fields are independent of the time coordinates. With suitable boundary
conditions, one can show that this moduli space is the space of solutions of
Bogomolny equations on I × C with prescribed singularities.

The Bogomolny equations are equations for a gauge field A and a Higgs
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field φ0 ∈ ad(E) on a 3-manifold Y (which in our case is C × I):

F = ⋆3dAφ0.

To understand the moduli space of solutions of this equation, let us rewrite
it as an evolution equation along I. Letting σ to be a coordinate on I, and
working in the gauge Aσ = 0, we get

∂σAz̄ = −iDz̄φ0.

This equation says that the isomorphism class of the holomorphic G-bundle
on C × y, y ∈ I corresponding to Az̄ is independent of y. This conclusion is
violated only at the points on I where the ’t Hooft operators are inserted.
A further analysis shows that at these points the holomorphic G-bundle
undergoes a Hecke transformation.

By definition, Hecke transformations modify the G-bundle at a single
point. The space of such modifications is parameterized by points of the
affine Grassmannian GrG = G((z))/G[[z]]. This is an infinite-dimensional
space which is a union of finite-dimensional strata called Schubert cells [40].
Schubert cells are labeled by Weyl-equivalence classes of coweights of G. As
explained in [6], the Hecke transformations corresponding to an ’t Hooft
operator Tµ are precisely those in the Schubert cell labeled by µ.

The net result of this analysis is that for a single ’t Hooft operator Tµ

the space of solutions of the BPS equations is the Schubert cell Cµ. The
Hilbert space of the associated 1d sigma-model is the L2 cohomology of
Cµ. More generally, computing the product of ’t Hooft operators reduces
to the study of L2 cohomology of the Schubert cells. Assuming that the
L2 cohomology coincides with the intersection cohomology of the closure of
the cell, the prediction of the MO duality reduces to the statement of the
geometric Satake correspondence, which says that the tensor category of
equivariant perverse sheaves on GrG is equivalent to the category of finite-
dimensional representations of LG [41, 42, 43]. This provides a new and
highly nontrivial check of the MO duality.

From the gauge-theoretic viewpoint one can think about ’t Hooft oper-
ators as functors from the category of A-branes on MH(G,C) to itself. To
understand how this comes about, consider a loop operator (Wilson or ’t
Hooft) in the twisted N = 4 SYM theory (at t = i or t = 1, respectively).
As usual, we take the four-manifold X to be Σ × C, and let the curve γ
be of the form γ0 × p, where p ∈ C and γ0 is a curve on Σ. Let ∂Σ0 be a
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connected component of ∂Σ on which we specify a boundary condition cor-
responding to a given brane β. This brane is either a B-brane in complex
structure J or an A-brane in complex structure K, depending on whether
t = i or t = 1. Now suppose γ0 approaches ∂Σ0. The “composite” of ∂Σ0

with boundary condition β and the loop operator can be thought of as a new
boundary condition for the topological sigma-model with target MH(G,C).
It depends on p ∈ C as well as other data defining the loop operator. One
can show that this “fusion” operation defines a functor from the category of
topological branes to itself [6].

In the case of the Wilson loop, it is very easy to describe this functor. In
complex structure J , we can identify MH(G,C) with Mflat(G,C). On the
product Mflat(G,C)×C there is a universal G-bundle which we call E . For
any p ∈ C let us denote by Ep the restriction of E to Mflat(G,C)×p. For any
representation R of G we can consider the operation of tensoring coherent
sheaves on Mflat(G,C) with the associated holomorphic vector bundle R(Ep).
One can show that this is the functor corresponding to the Wilson loop in
representation R inserted at a point p ∈ C. We will denote this functor
WR(p). The action of ’t Hooft loop operators is harder to describe, see
sections 9 and 10 of [6] for details. In particular, it is shown there that ’t
Hooft operators act by Hecke transformations.

Consider now the structure sheaf Ox of a point x ∈ Mflat(
LG,C). For

any representation LR of LG the functor corresponding to WLR(p) maps Ox

to the sheaf Ox ⊗ LR(Ep)x. That is, Ox is simply tensored with a vector
space LR(Ep)x. One says that Ox is an eigenobject of the functor WLR(Ep)
with eigenvalue LR(Ep)x. The notion of an eigenobject of a functor is a
categorification of the notion of an eigenvector of a linear operator: instead
of an element of a vector space one has an object of a C-linear category,
instead of a linear operator one has a functor from the category to itself, and
instead of a complex number (eigenvalue) one has a complex vector space
LR(Ep)x.

We conclude that Ox is a common eigenobject of all functors WLR(p) with
eigenvalues LR(Ep)x. Actually, since we can vary p continuously on C and
the vector spaces LR(Ep)x are naturally identified as one varies p along any
path on C, it is better to say that the eigenvalue is a flat LG-bundle LR(E)x.
Tautologically, this flat vector bundle is obtained by taking the flat principal
LG-bundle on C corresponding to x and associating to it a flat vector bundle
via the representation LR.

Applying the MO duality, we may conclude that the A-brane on MH(G,C)
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corresponding to a fiber of the Hitchin fibration is a common eigenobject for
all ’t Hooft operators, regarded as functors on the category of A-branes.
The eigenvalue is the flat LG bundle on C determined by the mirror of the
A-brane. This is the gauge-theoretic version of the statement that the D-
module on BunG(C) corresponding to a point on Mflat(

LG,C) is a Hecke
eigensheaf.

9 Quantum geometric Langlands duality

One possible generalization of geometric Langlands duality is to consider
twisted Yang-Mills theory with θ 6= 0. Making θ nonzero in the gauge theory
corresponds to turning on a topologically nontrivialB-field in the correspond-
ing topological sigma-model on Σ:

B = −
θ

2π
ωI .

At t = i this deformation does not affect the topological sigma-model, be-
cause one can make it a 2-form of type (2, 0) by adding an exact form, and
(2, 0) B-fields correspond to BRST-exact deformations of the action. Equiv-
alently, one notes that all dependence on θ in the gauge theory is through
the parameter Ψ, and for t = i Ψ = ∞ irrespective of the value of θ.

On the other hand, for t = 1 the deformation has a nontrivial effect, as
it makes Ψ real (for t = 1 and θ = 0 we have Ψ = 0). Of course, there is
no paradox here: turning on θ at t = 1 does not correspond to turning on
θ at t = i. To understand the implications of a nonzero θ at t = 1, note
that keeping t = 1 and varying θ we can get arbitrary real values of Ψ. On
the other hand, duality maps Ψ → −1/(ngΨ). Thus one can say that MO
duality maps the twisted YM theory with t = 1 and a nonzero θ = θ0 to
a twisted YM theory with t = 1 and θ = −4π2/θ0. That is, it maps an
A-model in complex structure K for MH(G,C) to an A-model in complex
structure K for MH(LG,C).

To understand the mathematical implications of this statement, we need
to reinterpret the category of A-branes on MH(G,C) when the B-field is
proportional to ωI . Again, the key insight is that for any such B-field there
exists an analogue of the canonical coisotropic A-brane, such that the cor-
responding sheaf of open string states is isomorphic to the sheaf of twisted
differential operators on M(G,C).
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The curvature F of the line bundle on a coisotropic A-brane should satisfy

(

ω−1(F +B)
)2

= −1,

where ω = Imτ ωK . We take

F = Imτ · cos q, sin q = −
Reτ

Imτ

as the curvature of the canonical coisotorpic A-brane for nonzero θ. The
corresponding sheaf of open strings, regarded as a sheaf of vector spaces,
is isomorphic to the sheaf of functions on MH(G,C) holomorphic in the
complex structure

I(Ψ) = I cos q − J sin q.

The corresponding holomorphic coordinates on MH(G,C) are

A′
z̄ = Az̄ − i tan

q

2
φz̄, φ′

z = φz + i tan
q

2
Az.

For q = 0, the complex structure I(Ψ) is simply I, and the corresponding
complex manifold is birational to the cotangent bundle to the moduli space
of holomorphic G-bundles on C. For q 6= 0 one can show that MH(G,C) is
birational to the space of pairs (E, ∂λ), where E is a holomorphic principal
G-bundle on C and ∂λ is a λ-connection on E, with λ = i tan q

2
. We remind

that a λ-connection on a holomorphic G-bundle E is a map

∂λ : Γ(E) → Γ(E ⊗ Ω1)

such that

∂λ(fs) = f∂λs+ λdf ⊗ s, ∀f ∈ Γ(Ω0), s ∈ Γ(E).

The space of λ-connections on E is an affine space modeled on the space of
Higgs fields on E. Thus in complex structure I(Ψ) the space MH(G,C) is
birational to an affine bundle modeled on the cotangent bundle of M(G,C).
We will call this affine bundle the twisted cotangent bundle.

The rest of the argument proceeds much in the same way as in the case
θ = 0. On the classical level, the sheaf of boundary observables correspond-
ing to the canonical coisotropic A-brane is quasiisomorphic to the sheaf of
holomorphic functions on the twisted cotangent bundle over M(G,C). On
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the quantum level, the algebra of boundary observables becomes noncommu-
tative, and to ensure that there are no problems with the definition of the
product one needs to work with functions which are polynomial in the fiber
coordinates. Thus we end up with a sheaf on M(G,C) which locally looks
like the sheaf of symbols of holomorphic differential operators on M(G,C).
The action of the A-model now has the form

S =

∫

Σ

Φ∗(ω − iF − iB) = −i

∫

Σ

Φ∗Ω′

where the holomorphic symplectic form Ω′ on the space of λ-connections is
given by

Ω′ = −
Im τ

π

∫

C

Tr (δφzδA
′
z̄) + i

Re τ

π

∫

C

Tr (δA′
zδA

′
z̄) .

The first term in this formula is exact, but the second one is not. It is pro-
portional to the pull-back of the curvature of the determinant line bundle on
M(G,C). Because of this, the action cannot be written as a boundary term
globally on M(G,C). But locally the form Ω′ is still exact, and therefore we
end up with the problem of quantizing the canonical commutation relations

[pi, q
j] = Im τ δj

i , [pi, pj] = [qi, qj] = 0.

The quantization is unique locally and gives holomorphic differential opera-
tors on some power of a line bundle L over M(G,C). Since H2(M(G,C))
and generated by the first Chern class of the determinant line bundle Det, we
may parameterize this complex power of a line bundle as K ⊗ Detq, q ∈ C.
We conclude that in the case θ 6= 0 the sheaf of boundary observables on the
canonical coisotropic A-brane is quasiisomorphic to the sheaf of holomorphic
differential operators on K ⊗ Detq for some complex number q.

It remains to fix q as a function of θ. For θ 6= 0 we cannot appeal to
time-reversal symmetry since nonzero θ breaks it. Instead, we note that for
θ = 2πn we must have q = n. Indeed, for these values of q we may consider
the locus φ = 0 in M(G,C) equipped with the gauge field F = −nωI as a
Lagrangian A-brane (recall that for nonzero B-field the gauge field on the
Lagrangian brane is not flat but satisfies F+B=0). It is also easy to show
that the sheaf of open strings which begin on the canonical coisotropic A-
brane and end on this Lagrangian A-brane is K⊗Detn (this follows from the
fact that ωI is the curvature of Det). Finally, one can show that q is linear
in θ. Therefore we must have q = θ/(2π) = Ψ for all Ψ.
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In the same way as before, by considering the sheaf of open strings begin-
ning on the c.c. brane and ending on any other A-brane, we can assign to any
A-brane a twisted D-module, i.e. a sheaf of modules over the sheaf of holo-
morphic differential operators on K ⊗ DetΨ. Conjecturally, this map can be
extended to an equivalence of categories. Therefore for Ψ 6= 0 the Montonen-
Olive duality would say that this category would remain unchanged if we
replaced G by LG and Ψ by −1/(ngΨ). This is called quantum geometric
Langlands duality. The name “quantum” comes from the fact that now on
both sides of the duality we have to deal with modules over noncommutative
algebras. Unlike in the “classical” case, here there is nothing comparable to
the Hecke eigensheaf. Physically, the reason for this is that the fibers of the
Hitchin fibration are not valid A-branes for nonzero θ.
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