Deforming commuting directions in infinite matrices

A.G. and G.F.Helminck, A.Opimakh

December 2009

Infinite Toda chain 1

• Particles on a straight line with nearest neighbour interaction:

- q_n is the displacement of the *n*-th particle, $n \in \mathbb{Z}$.
- Equations of motion in dimensionless form are described by

$$rac{dq_n}{dt}=p_n \ ext{and} \ rac{dp_n}{dt}=e^{-(q_n-q_{n-1})}-e^{-(q_{n+1}-q_n)}, \ n\in\mathbb{Z}.$$

Put

$$a_n := rac{1}{2} e^{-(q_n - q_{n-1})}$$
 and $b_n := rac{1}{2} p_n.$

Infinite Toda chain 2

• Introduce the $\mathbb{Z} \times \mathbb{Z}$ -matrices L resp. P by

$$\begin{pmatrix} \ddots & \ddots & \ddots & & & \\ \ddots & \mathbf{b_{n-1}} & a_n & 0 & \ddots \\ \ddots & a_n & \mathbf{b_n} & a_{n+1} & \ddots \\ & 0 & a_{n+1} & \mathbf{b_{n+1}} & \ddots \\ 0 & & \ddots & \ddots & \ddots \end{pmatrix}, \begin{pmatrix} \ddots & \ddots & \ddots & & 0 \\ \ddots & \mathbf{0} & -a_n & 0 & \ddots \\ \ddots & a_n & \mathbf{0} & -a_{n+1} & \ddots \\ & 0 & a_{n+1} & \mathbf{0} & \ddots \\ 0 & & \ddots & \ddots & \ddots \end{pmatrix}$$

,

• Equations of motion equivalent to:

$$\frac{dL}{dt} = PL - LP = [P, L].$$

Outline of the talk

- Basics of $\mathbb{Z}\times\mathbb{Z}\text{-matrices}$
- Lower Triangular Hierarchies (LTH)
- A geometric construction of solutions of LTH
- Upper Triangular Hierarchies (UTH)
- A geometric construction of solutions of UTH
- Combining both type of hierarchies
- Solutions of the combined hierarchy

December 2009

The geometric setting 1

- Let S^1 be the unit circle in the complex plane.
- Hilbert space $H = L^2(S^1, \mathbb{C}^k)$ with elements

$$h=\sum_{n\in\mathbb{Z}}a(n)z^n, ext{ where }a(n)\in\mathbb{C}^k ext{ for all } n\in\mathbb{Z}.$$

• $(\cdot | \cdot)$ standard inner product on \mathbb{C}^k . Inner product on H:

$$<\sum_{n\in\mathbb{Z}}a(n)z^n\mid\sum_{n\in\mathbb{Z}}b(n)z^n>:=\sum_{n\in\mathbb{Z}}(a(n)\mid b(n)).$$

• $\{f_i \mid 0 \le i \le k-1\}$ standard basis of \mathbb{C}^k . Hilbert basis of H:

$$e_{s+kj} := f_s z^j.$$

• To $B \in B(H)$ associated $\mathbb{Z} \times \mathbb{Z}$ -matrix w.r.t. this basis

$$[B]=([B]_{(l,k)})$$

The geometric setting 2

• $H^{(i)}$ is the subspace of H spanned by the

$$\{f_s z^i \mid 0 \le s \le k-1\}.$$

•
$$p^{(i)}$$
 the projection $H \mapsto H^{(i)}$

• The space H decomposes as the direct sum

$$H = \oplus_{i \in \mathbb{Z}} H^{(i)}$$

- To $B \in B(H)$ is associated the block decomposition $B = (B_{ij})$, where $B_{ij} := p^{(i)} \circ B \mid H^{(j)}$.
- Corresponding matrix decomposition [B] = ([B_{ij}]) in $k \times k$ -blocks.

The geometric setting 3

• The subspace H_j , $j \in \mathbb{Z}$ is defined by

$$H_j = \oplus_{i \leq j} H^{(i)}.$$

- $p_j := \bigoplus_{i \le j} p^{(i)}$ is the orthogonal projection onto H_j .
- Decomposition of any element $b \in B(H)$ w.r.t. the splitting $H = H_j \oplus H_i^{\perp}$, namely

$$b = egin{pmatrix} b_{++}(j)) & b_{+-}(j) \ b_{-+}(j) & b_{--}(j) \end{pmatrix}.$$

Basic $\mathbb{Z} \times \mathbb{Z}$ -matrices 1

 For A ∈ gl_k(ℂ), multiplying from the left defines a bounded map M_A : H → H with ℤ × ℤ-matrix

$$[M_{\mathcal{A}}] = i_k(\mathcal{A}) = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{A} & \mathbf{0} & \mathbf{0} & \ddots \\ \ddots & \mathbf{0} & \mathbf{A} & \mathbf{0} & \ddots \\ \ddots & \mathbf{0} & \mathbf{0} & \mathbf{A} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Commuting directions: {*i_k*(*A*) | *A* ∈ 𝔥}, where 𝔥 is the diagonal matrices with basis

$$E_{\alpha} = F_{\alpha}, \ (E_{\alpha})_{\gamma\delta} = \begin{cases} 1 & \text{if } \gamma = \delta = \alpha \\ 0 & \text{in other cases} \end{cases}$$

Basic $\mathbb{Z} \times \mathbb{Z}$ -matrices 2

• $M_z: H\mapsto H$ "multiplication with z" ,

$$M_z(\sum_{n\in\mathbb{Z}}a(n)z^n)=\sum_{n\in\mathbb{Z}}a(n)z^{n+1}.$$

• Matrix $[M_z] = \Lambda^{-k}$, where

$$\Lambda^{k} = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{0} & \mathsf{Id} & \mathbf{0} & \ddots \\ \ddots & \mathbf{0} & \mathbf{0} & \mathsf{Id} & \ddots \\ \ddots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Basic commuting directions: i_k(E_α)Λ^{kj}, j ∈ Z, 1 ≤ α ≤ k.
For LTH : j ≥ 0 and for UTH: j < 0.

Matrix decompositions 1

- *R* be a commutative ring.
- $M_k(R)$: $k \times k$ -matrices with coefficients from the ring R
- $M_{\mathbb{Z}}(R)$: $\mathbb{Z} \times \mathbb{Z}$ -matrices with coefficients from R.
- To a collection of k × k-matrices {d(ks)|s ∈ Z} in M_k(R) is associated a diagonal of k × k-blocks diag(d(ks)):

$$\begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & \mathbf{d}(\mathbf{kn} - \mathbf{k}) & 0 & 0 & \ddots \\ \ddots & 0 & \mathbf{d}(\mathbf{kn}) & 0 & \ddots \\ \ddots & 0 & 0 & \mathbf{d}(\mathbf{kn} + \mathbf{k}) & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Matrix decompositions 2

• The ring of $k \times k$ -block diagonal matrices in $M_{\mathbb{Z}}(R)$ by

 $\mathfrak{D}_k(R) = \{ d = \operatorname{diag}(d(ks)) | d(ks) \in M_k(R) \text{ for all } s \in \mathbb{Z} \}.$

• The elements $\Lambda^{km}, \ m \in \mathbb{Z}$, act on $\mathcal{D}_k(R)$ according to the formula

$$\Lambda^{km}$$
diag $(d(ks))\Lambda^{-km} =$ diag $(d(ks + km))$.

Each A = (α_(i,j)) ∈ M_ℤ(R) can uniquely be written as a formal infinite sum

$$A = \sum_{j \in \mathbb{Z}} a_j \Lambda^{kj}$$
 with all the $a_j \in \mathcal{D}_k(R).$

• Upper resp. lower triangular matrices:

$$A = \sum_{j \geq N} a_j \Lambda^{kj}$$
 resp. $B = \sum_{j \leq N} b_j \Lambda^{kj}$ for some N .

LTH

• For
$$A = \sum_{j \in \mathbb{Z}} d_j \Lambda^{kj}$$
 one defines

$${\cal A}_{\geq 0} = \sum_{j\geq 0} d_j \Lambda^{kj}$$

• *R* ring of functions in the flow parameters $\{t_{i\alpha}\}$ w.r.t. $i_k(E_{\alpha})\Lambda^{ki}$ and stable under all

$$\partial_{t_{i\alpha}} := \frac{\partial}{\partial t_{i\alpha}}.$$

• Deformation of Λ^k in lower triangular matrices:

$$\mathcal{L} := \Lambda^k + \sum_{i \leq 0} m_i \Lambda^{ik}$$

• Deformation of $i_k(E_\alpha)$ in lower triangular matrices:

$$\mathfrak{U}_{lpha}=i_k(E_{lpha})+\sum_{i<0}v_{i,lpha}\Lambda^{ik}$$

The $(\Lambda^k, \mathfrak{h})$ -hierarchy

• The commutatvity relations

$$[\mathcal{L},\mathcal{U}_{lpha}]=0$$
 and $[\mathcal{U}_{lpha},\mathcal{U}_{eta}]=0$

• Trivially satisfied at dressing Λ^k and the $i_k(E_\beta)$:

$$\mathcal{L} = U \Lambda^k U^{-1}, \mathfrak{U}_eta = U i_k(E_eta) U^{-1}, U = \mathsf{Id} + \sum_{i < 0} u_i \Lambda^{ik}.$$

- Perturbed commuting directions: $P_{i\alpha} := \mathcal{L}^{i}\mathcal{U}_{\alpha}$.
- The Lax equations of the $(\Lambda^k, \mathfrak{h})$ -hierarchy:

$$\partial_{t_{i\alpha}}(\mathcal{L}) = [(P_{i\alpha})_{\geq 0}, \mathcal{L}] \text{ and } \partial_{t_{i\alpha}}(\mathcal{U}_{\beta}) = [(P_{i\alpha})_{\geq 0}, \mathcal{U}_{\beta}].$$

Zero curvature relations

• There holds:

Theorem

For deformations \mathcal{L} and the \mathcal{U}_{β} that satisfy the commutativity relations, the Lax equations are equivalent to the zero curvature equations

$$\partial_{t_{n\alpha}}(B_{m\gamma}) - \partial_{t_{m\gamma}}(B_{n\alpha}) - [B_{n\alpha}, B_{m\gamma}] = 0.$$

for the finite band matrices $B_{j\beta} = (\mathcal{L}^{j}\mathcal{U}_{\beta})_{\geq 0}$.

• This set of equations expresses that the curvature of the differential form

$$\omega_{\geq 0} = \sum_{j=0}^{\infty} \sum_{\beta=1}^{k} B_{j\beta} dt_{j\beta},$$

is zero.

The relevant group

 For Hilbert spaces H₁ and H₂ and p ≥ 1, S_p is the Schatten ideal of bounded operators A : H₁ → H₂

$$||A||_p^p := \operatorname{trace}(A^*A)^{\frac{p}{2}} < \infty.$$

• For each such a p one introduces the group G(p) by

$$G_+ = \left\{ g = (g_{ij}) \in \mathsf{GL}(H) \; \middle| egin{array}{c} \oplus_{i > j} g_{ij} \in S_p \ \oplus_{i > j} (g^{-1})_{ij} \in S_p \end{array}
ight\}.$$

• Invertible elements in the Banach algebra

$$\mathfrak{G}_+ = \left\{ b = (b_{ij}) \in B(H) \; \middle| \; \oplus_{i > j} b_{ij} \in S_p
ight\}$$

equiped with the norm $||\cdot||_{\textit{res}}$ defined by

$$||b||_{res} = ||(b_{ij})||_{res} := ||b|| + || \oplus_{i>j} b_{ij}||_p.$$

December 2009

Subgroups of G_+

• The Lie algebra \mathcal{G}_+ can be split into the sum of the Lie subalgebras

$$\mathfrak{P}_+ := \left\{ p = (p_{ij}) \in \mathfrak{G}_+ \ \bigg| \ p_{ij} = 0 \text{ for all } i > j
ight\}$$

and

$$\mathfrak{U}_+ := \left\{ u = (u_{ij}) \in \mathfrak{G}_+ \ \bigg| \ u_{ij} = 0 \text{ for all } i \leq j
ight\}.$$

• Their corresponding Lie groups are

$$egin{aligned} & P_+ := \left\{ egin{aligned} p = (p_{ij}) \in G_+ \ \left| \begin{array}{c} p_{ij} = 0 \ ext{and} \ (p^{-1})_{ij} = 0 \ ext{for all} \ i > j
ight\}, \ & U_+ := \left\{ u = (u_{ij}) \in G_+ \ \left| \begin{array}{c} u_{ij} = 0 \ ext{for all} \ i < j \ u_{ii} = ext{Id} \ ext{for all} \ i \in \mathbb{Z}
ight\}. \end{aligned} \end{aligned}$$

The big cell for LTH

 $\bullet\,$ The map from ${\mathcal U}_+\times {\mathcal P}_+$ to ${\it G}_+$ defined by

$$(u_+, p_+) \mapsto \exp(u_+) \exp(p_+)$$

is a local diffeomorphism at (0, 0).

• The set U_+P_+ is an open subset of G_+ . It is called the *big* cell in G_+ w.r.t. U_+ and P_+ .

Proposition

Let $\Omega_+ \subset G_+$ be the collection of all $g \in G_+$ such that $g_{++}(i)$ is invertible for all $i \in \mathbb{Z}$. Then Ω_+ is equal to U_+P_+ .

Commuting flows 1

- Let \mathfrak{h} be the subalgebra of diagonal matrices inside $M_k(\mathbb{C})$
- Let U be any open connected neighborhood of the unit circle S^1
- $\Gamma(U,\mathfrak{h})$ for the set of holomorpic maps $\gamma: U \mapsto \mathfrak{h}$ such that

 $det(\gamma(u)) \neq 0$ for all $u \in U$.

- $\Gamma(\mathfrak{h})$ is the inductive limit of all the $\Gamma(U,\mathfrak{h})$
- Let $\Delta(\mathfrak{h})$ be the subgroup spanned by the elements

$$egin{pmatrix} z^{m_1} & 0 & \dots & 0 \ 0 & \ddots & \ddots & \vdots \ dots & \ddots & \ddots & 0 \ 0 & \dots & 0 & z^{m_k} \end{pmatrix}$$
 , all $m_i \in \mathbb{Z}.$

Commuting flows 2

Proposition

Then one has $\Gamma(\mathfrak{h}){=}\Gamma_+(\mathfrak{h})\;\Delta(\mathfrak{h})\;\Gamma_-(\mathfrak{h}),$ where

$$\Gamma_{+}(\mathfrak{h}) = \{\gamma_{+} \mid \gamma_{+} = \exp(\sum_{s \leq 0} \gamma_{s} z^{s}), \text{ with } \gamma_{s} \in \mathfrak{h} \text{ for all } s \leq 0\}$$

and

$$\Gamma_{-}(\mathfrak{h}) = \{\gamma_{-} \mid \gamma_{-} = \exp(\sum_{s>0} \gamma_{s} z^{s}), \text{ with } \gamma_{s} \in \mathfrak{h} \text{ for all } s > 0\}.$$

The elements of Γ₊(ħ) give by left multiplication on H operators M_{γ+} ∈ P₊. In local coordinates:

$$[M_{\gamma_+}] = \exp(\sum_{i=0}^{\infty} \sum_{\alpha=1}^{k} t_{i\alpha} i_k(E_{\alpha}) \Lambda^{ik}).$$

The construction

One starts with an element g ∈ G₊. Inside the group of commuting flows Γ₊(ħ) one considers

$$\Gamma_+(g,\mathfrak{h}) = \{\gamma_+ \in \Gamma_+(\mathfrak{h}) \mid M_{\gamma_+}g \in \Omega_+\}.$$

• Basic result:

Proposition

The set $\Gamma_+(g,\mathfrak{h})$ is an open dense subset of $\Gamma_+(\mathfrak{h})$.

- Choose for R the ring of holomorphic functions on $\Gamma_+(g,\mathfrak{h})$
- If the element $\gamma_+\in \Gamma_+(g,\mathfrak{h})$, there holds

$$[M_{\gamma_+}][g] = u_+(g,\gamma_+)^{-1} p_+(g,\gamma_+),$$

with $p_+(g,\gamma_+)\in [P_+]$ and $u_+(g,\gamma_+)\in [U_+].$

December 2009

Main result for LTH

- Consider $\Psi = u_+(g, \gamma_+)[M_{\gamma_+}] = \hat{\Psi}[M_{\gamma_+}]$
- Define

$$\mathcal{L}(\hat{\Psi}) = \hat{\Psi} \Lambda^k \hat{\Psi}^{-1} ext{ and } \mathcal{U}_lpha(\hat{\Psi}) = \hat{\Psi} i_k(\mathcal{E}_lpha) \hat{\Psi}^{-1}.$$

• Put
$$extsf{P}_{ilpha}:=\mathcal{L}(\hat{\Psi})^{i}\mathfrak{U}_{lpha}(\hat{\Psi})$$
 and $extsf{B}_{ilpha}:=(extsf{P}_{ilpha})_{\geq0}.$

Theorem

• For all
$$i \geq 0$$
 and all $\alpha \in \{1, \cdots, k\}$: $\partial_{t_{i\alpha}}(\Psi) = B_{i\alpha}\Psi$.

On the set of matrices (L(u₊(g, γ₊)), U_α(u₊(g, γ₊))) form a solution of the (Λ^k, ħ)-hierarchy.

③ For each
$$p_0 \in P_+$$
 one has

$$\mathcal{L}(u_+(g,\gamma_+)) = \mathcal{L}(u_+(gp_0,\gamma_+)),$$

 $\mathcal{U}_{lpha}(u_+(g,\gamma_+)) = \mathcal{U}_{lpha}([u_+(gp_0,\gamma_+)]).$

UTH

• For
$$A = \sum_{j \in \mathbb{Z}} d_j \Lambda^{kj}$$
 one defines

$$A_{<0} = \sum_{j<0} d_j \Lambda^{kj}$$

• *R* ring of functions in the flow parameters $\{s_{j\beta}\}$ w.r.t. $i_k(F_\beta)\Lambda^{-kj}$ and stable under all

$$\partial_{\mathbf{s}_{j\beta}} := \frac{\partial}{\partial \mathbf{s}_{j\beta}}.$$

• Deformation of Λ^{-k} in upper triangular matrices:

$${\mathfrak M}:=\sum_{i\geq -1}m_i\Lambda^{ik}$$
 with m_{-1} invertible.

• Deformation of $i_k(F_\beta)$ in upper triangular matrices:

$$\mathcal{V}_{eta} = \sum_{i \geq 0} v_{i,eta} \Lambda^{ik}$$

The $(\Lambda^{-k}, \mathfrak{h})$ -hierarchy

• The commutatvity relations

$$[\mathcal{M}, \mathcal{V}_{\alpha}] = 0 \text{ and } [\mathcal{V}_{\alpha}, \mathcal{V}_{\beta}] = 0 \tag{1}$$

• Trivially satisfied at dressing Λ^{-k} and the $i_k(F_\beta)$:

$$\mathcal{M} = V \Lambda^{-k} V^{-1}, \mathcal{V}_{\beta} = V i_k(F_{\beta}) V^{-1}, V = \sum_{i \geq 0} v_i \Lambda^{ik}.$$

- Perturbed commuting directions: $Q_{j\alpha} := \mathcal{M}^j \mathcal{V}_{\alpha}$.
- The Lax equations of the $(\Lambda^{-k}, \mathfrak{h})$ -hierarchy:

$$\partial_{s_{j\alpha}}(\mathcal{M}) = [(Q_{j\alpha})_{<0}, \mathcal{M}] \text{ and } \partial_{s_{j\alpha}}(\mathcal{V}_{\beta}) = [(Q_{j\alpha})_{<0}, \mathcal{V}_{\beta}].$$

The relevant geometry for UTH

• For each p corresponding to the Schatten class S_p the group G_- is

$$G_{-} = \left\{ g = (g_{ij}) \in \mathsf{GL}(\mathcal{H}) \mid egin{matrix} \oplus_{i < j} g_{ij} \in \mathcal{S}_p \ \oplus_{i < j} (g^{-1})_{ij} \in \mathcal{S}_p \end{matrix}
ight\}.$$

• Its Lie algebra is

$$\mathfrak{G}_{-} = \left\{ b = (b_{ij}) \in B(H) \ \middle| \ \oplus_{i < j} b_{ij} \in S_p
ight\}$$

• It splits into the sum of the Lie subalgebras

$$\mathfrak{P}_{-} := \left\{ p = (p_{ij}) \in \mathfrak{G}_{-} \mid p_{ij} = 0 \text{ for all } i > j
ight\},$$
 $\mathfrak{U}_{-} := \left\{ u = (u_{ij}) \in \mathfrak{G}_{-} \mid u_{ij} = 0 \text{ for all } i \leq j
ight\}.$

More geometry

• Their corresponding Lie groups are

$$P_{-} := \left\{ p = (p_{ij}) \in G_{-} \mid p_{ij} = 0 \text{ and } (p^{-1})_{ij} = 0 \text{ for all } i > j
ight\},$$

$$U_- := \left\{ u = (u_{ij}) \in G_- \ \left| egin{array}{c} u_{ij} = 0 \ {
m for all} \ i < j \\ u_{ii} = {
m Id} \ {
m for all} \ i \in \mathbb{Z} \end{array}
ight\}.$$

- The set Ω₋ = U₋P₋ is an open subset of G₋. It is called the big cell in G₋ w.r.t. U₋ and P₋.
- The elements of Γ₋(ħ) give by left multiplication on H operators M_{γ-} ∈ U₋. In local coordinates:

$$[M_{\gamma_{-}}] = \exp(\sum_{j=1}^{\infty} \sum_{\beta=1}^{k} s_{j\beta} i_{k}(F_{\beta}) \Lambda^{-jk}).$$

The construction for UTH

One starts with an element g ∈ G₋. Inside the group of commuting flows Γ₋(ħ) one considers

$$\Gamma_{-}(g,\mathfrak{h}) = \{\gamma_{-} \in \Gamma_{-}(\mathfrak{h}) \mid gM_{\gamma_{-}}^{-1} \in \Omega_{-}\}.$$

• Basic result:

Proposition

The set $\Gamma_{-}(g, \mathfrak{h})$ is an open dense subset of $\Gamma_{-}(\mathfrak{h})$.

- Choose for R the ring of holomorphic functions on $\Gamma_{-}(g,\mathfrak{h})$
- If the element $\gamma_{-}\in \Gamma_{-}(g,\mathfrak{h})$, there holds

$$g[M_{\gamma_-}^{-1}] = u_-(g,\gamma_-)p(g,\gamma_-),$$

with $p(g, \gamma_{-}) \in P_{-}$ and $u_{-}(g, \gamma_{-}) \in U_{-}$.

Main result for UTH

• Consider $\Phi = [p(g, \gamma_{-})][M_{\gamma_{-}}] = \hat{\Phi}[M_{\gamma_{-}}]$

Define

$$\mathfrak{M}(\hat{\Phi}) = \hat{\Phi} \Lambda^{-k} \hat{\Phi}^{-1}$$
 and $\mathcal{V}_{\beta}(\hat{\Phi}) = \hat{\Phi} i_k(F_{\beta}) \hat{\Phi}^{-1}$.

• Put
$$Q_{jeta}:=\mathcal{M}(\hat{\Phi})^j\mathcal{V}_eta(\hat{\Phi})$$
 and $C_{jeta}:=(Q_{jeta})_{<0}.$

Theorem

- For all $j \ge 1$ and all $\beta \in \{1, \cdots, k\}$: $\partial_{s_{j\beta}}(\Phi) = C_{j\beta}\Phi$.
- The set of matrices (M([p(g, γ₋,)]), V_β([p(g, γ₋)])) form a solution of the (Λ^{-k}, ħ)-hierarchy.

③ For each
$$u_0 \in U_-$$
 one has

$$\mathcal{M}([p(g,\gamma_{-})]) = \mathcal{M}([p(u_{0}g,\gamma_{-})]),$$

$$\mathcal{V}_{\beta}([p(g,\gamma_{-})]) = \mathcal{V}_{\beta}([p(u_{0}g,\gamma_{-})]).$$

LTH+UTH

• *R* ring of functions in the flow parameters $\{t_{i\alpha}\}$ and $\{s_{j\beta}\}$ w.r.t. the $i_k(E_{\alpha})\Lambda^{ki}$ and the $i_k(F_{\beta})\Lambda^{-kj}$ and stable under all

$$\partial_{t_{i\alpha}} := rac{\partial}{\partial t_{i\alpha}} ext{ and } \partial_{s_{j\beta}} := rac{\partial}{\partial s_{j\beta}}$$

- Deformations (L, U_α) of Λ^k and the i_k(E_α) in lower triangular matrices.
- These directions should commute:

$$[\mathcal{L},\mathcal{U}_{lpha}]=0$$
 and $[\mathcal{U}_{lpha},\mathcal{U}_{eta}]=0$

- Deformations (M, V_β) of Λ^{-k} and the i_k(F_β) in upper triangular matrices:
- These directions should commute:

$$[\mathcal{M},\mathcal{V}_{lpha}]=0$$
 and $[\mathcal{V}_{lpha},\mathcal{V}_{eta}]=0$

The two dimensional \mathfrak{h} -hierarchy

The Lax equations for the two-dimensional h-hierarchy are:
For L and the U_α:

$$\partial_{t_{i\alpha}}(\mathcal{L}) = [(P_{i\alpha})_{\geq 0}, \mathcal{L}] \text{ and } \partial_{t_{i\alpha}}(\mathfrak{U}_{\beta}) = [(P_{i\alpha})_{\geq 0}, \mathfrak{U}_{\beta}],$$

$$\partial_{\mathfrak{s}_{j\gamma}}(\mathcal{L})=[(\mathcal{Q}_{j\gamma})_{<0},\mathcal{L}] ext{ and } \partial_{\mathfrak{s}_{j\gamma}}(\mathfrak{U}_{eta})=[(\mathcal{Q}_{j\gamma})_{<0},\mathfrak{U}_{eta}].$$

• For \mathcal{M} and the \mathcal{V}_{β} :

$$\partial_{s_{j\gamma}}(\mathfrak{M}) = [(\mathcal{Q}_{j\gamma})_{<0}, \mathfrak{M}] \text{ and } \partial_{s_{j\gamma}}(\mathfrak{V}_{\beta}) = [(\mathcal{Q}_{j\gamma})_{<0}, \mathfrak{V}_{\beta}],$$

$$\partial_{t_{i\alpha}}(\mathcal{M}) = [(P_{i\alpha})_{\geq 0}, \mathcal{M}] \text{ and } \partial_{t_{i\alpha}}(\mathcal{V}_{\beta}) = [(P_{i\alpha})_{\geq 0}, \mathcal{V}_{\beta}].$$

December 2009

The group setting

- Let G be the group $\{g \in GL(H) \mid g Id \in S_p\}$.
- Note $\Gamma_+(\mathfrak{h}) \nsubseteq G$ and $\Gamma_-(\mathfrak{h}) \nsubseteq G$.
- The group $U_+ \subset G$. Let $P = P_- \cap G$.
- Big cell in $G: U_+P$.

Proposition

For each $g \in G$, there is a $\gamma_+ \in \Gamma_+(\mathfrak{h})$ and a $\gamma_- \in \Gamma_-(\mathfrak{h})$ such that

$$M_{\gamma_+}M_{\gamma_-}gM_{\gamma_+}^{-1}M_{\gamma_-}^{-1}$$

belongs to the big cell U_+P . The collection of all these $(\gamma_+, \gamma_-) \in \Gamma_+(\mathfrak{h}) \times \Gamma_-(\mathfrak{h})$ one denotes by $\Gamma(g, \mathfrak{h})$

Final result

and

$$\mathfrak{M}(\hat{\Phi}) = \hat{\Phi} \Lambda^{-k} \hat{\Phi}^{-1}$$
 and $\mathcal{V}_{\beta}(\hat{\Phi}) = \hat{\Phi} i_k(F_{\beta}) \hat{\Phi}^{-1}$.

There holds now

Theorem

The matrices $(\mathcal{L}(\hat{\Psi}), \mathcal{U}_{\alpha}(\hat{\Psi}))$ and $(\mathcal{M}(\hat{\Phi}), \mathcal{V}_{\beta}(\hat{\Phi}))$ satisfy the Lax equations of the two-dimensional \mathfrak{h} -hierarchy.

THANK YOU FOR YOUR ATTENTION