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Abstract. These are notes derived from a master’s class on Deco-
rated Teichmüller Theory taught at Aarhus University during Au-
gust, 2006, under the aegis of the Center for the Topology and
Quantization of Moduli Spaces. The current working manuscript
covers only the first half of these lectures, and it is planned to
complete this manuscript with an exposition of the second half as
well.

Introduction

These notes are intended to be a self-contained and elementary pre-
sentation from first principles of Decorated Teichmüller Theory, as de-
veloped by the author and collaborators over the last 20 years, with
an eye towards presenting the geometric background necessary for the
quantization of Teichmüller space [13, 35] and for cluster algebras
[16, 17]. There are also digressions into other applications, for in-
stance, to algebraic number theory, circle homeomorphisms, harmonic
analysis, the topology of Riemann’s moduli space and arc complexes,
Morita-Johnson theory, the punctured solenoid, and string theory.

We have taken this opportunity to correct a few small calculational
errors (which are explicitly noted in the text) and to present sometimes
simpler and sometimes more detailed proofs than in the original papers.
Though the theory was originally developed [53, 54] for punctured sur-
faces, there are also analogous results for surfaces with boundary [62],
for “partially decorated surfaces”, and for “surfaces with holes”. We
have furthermore taken this opportunity to develop these other parallel
versions here in part because of their relevance to cluster algebras and
possible relevance to quantization.

These notes are organized as follows. The first lecture introduces
the objects of central interest: the action of the mapping class group
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on Teichmüller space with quotient Riemann’s moduli space. The up-
per half-plane, Poincaré disk, and Minkowski models for the hyperbolic
plane are described in the second lecture together with the isometric
actions of the Möbius group on these spaces and several subsequently
useful formulas. The third lecture digresses from geometry to discuss
algebraic number theory and in particular gives a geometric descrip-
tion of the Gauss product of definite binary quadratic forms; in fact,
one of the author’s papers [59] ( c©Springer-Verlag 1996) on this mate-
rial, which was again intended to be a self-contained introduction from
first principles, is included as an appendix with the kind permission of
Springer Science and Business Media. The fourth lecture introduces
our “lambda length” coordinates, which are the basis for essentially all
of our constructions and calculations, and several fundamental formulas
are derived via direct calculation in Minkowski space. The fifth lecture
finally applies this material to give global coordinates on the decorated
Teichmüller space of a punctured surface and to prove a number of ba-
sic algebraic and geometric properties. The sixth lecture describes the
parametrization of the Teichmüller space of a surface with holes using
“shear coordinates” (which are basic to Y-systems in cluster algebras),
explains the combinatorial method for calculating holonomies (which is
required for quantization), and again derives several basic algebraic and
geometric properties. The seventh lecture applies the lambda lengths
to study the group of homeomorphisms of the circle, and the eighth
explains the corresponding Lie algebra structure together with appli-
cations to harmonic analysis and signal processing.

These notes cover somewhat more than was treated in the lectures,
and though a sequential reading of the lectures is desirable, it is there-
fore possible to simply skip certain sections entirely without affecting
continuity. The latter part of the third lecture on Gauss product can
be skipped without affecting later material, and on the other hand, the
earlier material in the third lecture on the Farey tesselation is required
in the seventh and eighth lectures. The sixth lecture can be skipped
without loss of continuity for the reader interested only in punctured
surfaces, and the seventh and eighth can be skipped by the reader
interested specifically in geometry.

We have not strived for completeness in the bibliography, rather, we
have cited papers and books whose bibliographies should be consulted
for more complete references. Let us apologize here and now if the
concomitant omissions from our listed references might cause offense.
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1. Cast of characters

Let F = F s
g,r be a smooth oriented surface of genus g ≥ 0 with s ≥ 0

punctures and r ≥ 0 smooth boundary components. We shall usually
require that 2g − 2 + r + s > 0, i.e., F has negative Euler charac-
teristic, and that r + s ≥ 0, and we shall often write F s

g = F s
g,0 for

notational simplicity. Define the mapping class group MC(F ) of F to
be the group of all isotopy classes of orientation-preserving homeomor-
phisms of F , where the homeomorphisms and isotopies are required
to fix each point of the boundary of F , and define the pure mapping
class group PMC(F ) < MC(F ) to be the subgroup corresponding to
homeomorphisms which furthermore fix each puncture.

Really, these notes are dedicated just to the study of these groups
which play a central role in low-dimensional topology and geometry.
See [6] for an extensive discussion of these and related groups. However,
our analysis of these groups will take us far afield from the purely group-
theoretic considerations with which we begin in this lecture.

Figure 1 Dehn twist homeomorphisms.
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There are especially simple and explicit generators for MC(F ) going
back to Max Dehn in the 1930’s as follows. Suppose that c is a simple
closed curve in F and define the (right) Dehn twist τc : F → F to be the
homeomorphism supported on an annular neighborhood of c, where one
cuts F along c, twists once to the right in the annular neighborhood,
and then re-glues along c as indicated in Figure 1, where we illustrate
the affect of τc on an arc transverse to c. Notice that the isotopy
class of τc is independent of the choice of annular neighborhood and
depends only on the isotopy class of c in F , and that the right-handed
sense of τc depends only upon the orientation of F and not upon any
orientation of c. Furthermore, τc is isotopic to the identity if and only
if c is inessential, i.e., contractible to a point in F or to one of the
punctures of F .

Figure 2 Dehn twist generators for the mapping class group.

Theorem 1.1. [Dehn, Lickorish, Humphreys] [24] Adopting the no-
tation of Figure 2 for the curves c0, . . . , c2g in the surface F 0

g,1 ⊂ F 0
g ,

the mapping class groups MC(F 0
g,1) and MC(F 0

g ) are generated by the
Dehn twists τc0 , . . . , τc2g.

Let us remark that analogous generators are known for surfaces with
s > 0 and r ≥ 1 as well, and also for the pure mapping class groups
(cf. [6]), but we will be satisfied here with this result. Furthermore, a
different generating set will be derived for any surface with r + s 6= 0
later in these notes (cf. Lecture 13).

In fact, there are standard relations among these generators that
were essentially already known to Dehn as follows, where we assume
that all curves mentioned are simple closed curves.

(Naturality) if f ∈MC(F ) with f(c) = d, then τd = fτcf
−1;

(Commutativity) if c and d are disjoint, then τcτd = τdτc;
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(Braiding) if c and d meet transversely in a single point, then
τcτdτc = τdτcτd;

(Chain) if d1, d2 are disjoint each meeting c transversely in a single
point as in Figure 3a, then (τd1

τcτd2
)4 = τ−1

b1
τ−1
b2

, where b1, b2 are the
boundary components of a neighborhood in F of c ∪ d1 ∪ d2;

(Lantern) if c12, c23, c13 is a configuration of curves in F 0
0,4 pair-

wise intersecting one another transversely in pairs of points, where
d1, d2, d3, d4 denote the boundary components of F 0

0,4 as in Figure
3b, then τc12τc23τc13 = τd1

τd2
τd3
τd4

;

(Garside) in the notation of Figure 2, if we define the Garside word

∆g = (τc1)(τc2τc1)(τc3τc2τc1) · · · (τc2g
· · · τc2τc1),

then ∆4
g is the Dehn twist along the boundary of F 0

g,1 ⊂ F 0
g .

3a Chain relation 3b Lantern relation

Figure 3 The chain and lantern relations.

The naturality and commutativity relations follow directly from the
definitions. The remaining relations are actually kind of fun to verify,
where one chooses a collection of arcs in each case that decomposes the
surface in question into a disk, one confirms that the two sides of the
asserted equation maps each such arc to pairs of isotopic arcs, and one
finally uses Alexander’s trick (that a homeomorphism of a disk which
is the identity on the boundary is isotopic to the identity) to conclude
that indeed the asserted relations hold in MC(F ). These verifications
give the flavor of the combinatorial fun to be had with this description
of the mapping class group.

Let us say that a relation as above is “non-separating” in F if all of
the curves in the relation are non-separating in the surface F . It re-
quired a long sequence of ideas from Dehn to Cerf to Hatcher/Thurston
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to Wajnryb to show that this list of easily verified relations in fact give
a complete presentation of MC(F ):

Theorem 1.2. [Wajnryb] [7, 69] Take the generators for MC(F 0
g,1)

described in Theorem 1.1, omitting c0 for g = 1. Then a complete
set of relations for MC(F 0

g,1) are provided by commutativity and braid-
ing among these generators plus the following relations: for g = 1,
no additional relations; for g = 2, a single non-separating chain re-
lation; for g ≥ 3, a single non-separating chain relation and a single
non-separating lantern relation. Furthermore, the kernel of the natu-
ral homomorphism MC(F 0

g,1) →MC(F 0
g ) is generated by the following

relations: for g = 1, ∆4
1 = 1, and for g ≥ 2, ∆2

gτb∆
−2
g = τb, where b is

the curve illustrated in Figure 2.

Corollary 1.3. For g ≥ 3, we have H1(MC(F 0
g )) = 0, i.e., the abelian-

ization of the mapping class group is trivial.

Proof. According to Theorem 1.1, the mapping class group of F = F 0
g

is generated by Dehn twists along non-separating curves. If c and d
are non-separating curves, then F − c is homeomorphic to F − d, and
so τc is conjugate in MC(F ) to τd by the naturality relation. It follows
that the abelianization of MC(F ) is a cyclic group. Since there is a
non-separating lantern relation in F for g ≥ 3 and since the exponent
sum of a lantern relation is one, it follows that this cyclic group is
trivial. �

Further analogous tricks with the lantern relation prove thatMC(F s
g,r)

also abelianizes to zero for g ≥ 3. This elementary argument belies the
difficulty of the following important and fundamental open problem:

Problem 1.4. Calculate the homology or cohomology of the mapping
class groups.

We shall develop tools towards this problem by considering actions
of mapping class groups on appropriate spaces as follows. Supposing
now that r = 0 and 2g−2+s > 0, first roughly define the “Teichmüller
space” T (F ) of F = F s

g in any one of the following equivalent ways:
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T (F ) = {complex structures on F}/isotopy

= {conformal structures on F}/isotopy

= {hyperbolic structures on F}/isotopy.

Slightly more explicitly in the first two formulations, we consider
complex or conformal structures on the fixed smooth manifold F mod-
ulo push-forward of structure by diffeomorphisms isotopic to the iden-
tity, where the equivalence of conformal and complex structures in this
dimension is easily verified. See [1, 22] for a more complete discussion.

In fact, it is the third formulation we shall develop here, where by a
“hyperbolic structure” on F we mean a complete finite-area Riemann-
ian metric of constant Gauss curvature -1 again modulo push-forward
by diffeomorphisms isotopic to the identity. The equivalence of con-
formal and hyperbolic structures is provided by the celebrated Uni-
formization Theorem of Koebe, Klein, and Poincaré. See [1, 22] for
more details.

Let us now be precise with a careful definition of T (F ) as a topolog-
ical space in the hyperbolic setting. Define the Möbius group PSL2(R)
to be the quotient of the group of two-by-two matrices of determinant
one over the reals R, where the matrix

A =

(
a b
c d

)
is identified with − A =

(
−a −b
−c −d

)
.

(Much more will be said about this group in the next several lectures,
and see [5, 18] for further details.) Consider the collection of homomor-
phisms ρ : π1(F ) → PSL2(R) from the fundamental group π1(F ) to
PSL2(R), and define the collection Hom′(π1(F ), PSL2(R)) of all such
homomorphisms ρ so that ρ is injective (ρ is faithful), the identity in
PSL2(R) is not an accumulation point of the image of ρ (ρ is discrete),
and finally if γ ∈ π1(F ) is freely homotopic to a puncture of F , then the
absolute value of the trace of ρ(γ) is 2 (ρ maps peripheral elements to
parabolics). Choosing a basis for π1(F ), this space of homomorphisms
inherits a topology from that on the entries of the representing matri-
ces; this topology is independent of the choice of basis since given two
such choices, it is easy to see that one topology is finer than the other.
Finally, PSL2(R) acts on this space of homomorphisms by conjugation,
and we define the quotient space

T (F ) = Hom′(π1(F ), PSL2(R))/PSL2(R),

to be the Teichmüller space of F .
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This may seem like a mouthful, but we shall develop tools to un-
derstand this space quite explicitly from geometric and combinatorial
points of view. In fact, we shall see (cf. Theorems 5.2 and 6.1) that
T (F ) is homeomorphic to an open ball of dimension 6g − 6 + 2s for
F = F s

g with s ≥ 1 (this result holding also for s = 0). The principal
reason for introducing T (F ) is that MC(F ) acts on this ball, as is ob-
vious from the rough definitions since in each case we take the quotient
by push-forward of structure by isotopy just as in the definition of the
mapping class group. In our careful definition, MC(F ) acts on π1(F )
by outer automorphisms, so the action on T (F ) is well-defined since
we mod out by conjugation. Furthermore, we shall see that MC(F )
acts on T (F ) discretely but with fixed points of finite isotropy (i.e.,
the stabilizer in MC(F ) of any point of T (F ) is a finite subgroup),
and these properties allow us to derive facts about MC(F ) from this
action. The quotient

M(F ) = T (F )/MC(F )

is Riemann’s moduli space and is arguably the other central character
of our considerations beyond the mapping class group. Closely related
to Problem 1.4, we have the likewise fundamental open problem:

Problem 1.5. Calculate the homology or cohomology groups of Rie-
mann’s moduli spaces.

In fact, we shall almost always require s ≥ 1 in the sequel and work
with the trivial Rs

>0-bundle over T (F ), where F = F s
g , which we call

the decorated Teichmüller space and denote T̃ (F ). At the moment, this
is simply an abstract bundle over T (F ), but we shall develop a natural

geometric interpretation for it as well. Thinking of a point of T̃ (F ) as
a point in T (F ) together with the assignment of a positive real number

to each puncture, the mapping class group MC(F ) also acts on T̃ (F )
by simply permuting the assigned numbers. Thus, the basic cast of
characters for these notes is summarized in the following diagram:

MC(F ) y T̃ (F ) − Rs
>0

↓
MC(F ) y T (F )

↓
M(F )
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2. Three models for the hyperbolic plane

The discovery of two-dimensional hyperbolic geometry in the nine-
teenth century independently by Klein, Poincaré and Lobochevsky
solved a millennia-old problem on the consistency and independence
of Euclid’s other axioms from his Fifth Axiom: given a line and a
point not on that line, there is a unique line through the given point
which is parallel to the given line. This lecture introduces three differ-
ent models for hyperbolic geometry which are basic to our treatment
of Teichmüller space. References for the material in this lecture are
[5, 18, 53]

The first model is the upper half-plane

U = {(x, y) ∈ R2 : y > 0}
endowed with the Riemannian metric ds2 = (dx2 + dy2)/y2, so U is
conformal to the usual Euclidean upper half-plane. We shall typically
identify R2 with the complex plane C and hence U ⊂ C with the
complex numbers z = x + iy of positive imaginary part y > 0, where
i =

√
−1.

One can check without difficulty that geodesics in U are given by
circles perpendicular to the real axis together with the extreme case
of rays with real endpoints parallel to the imaginary axis. Thus, one
sees immediately that Euclid’s Fifth Axiom fails since there are in fact
infinitely many lines parallel to a given line passing through a given
point not on the given line, and it is an exhaustive exercise to check
that Euclid’s remaining axioms do indeed hold in the upper half-plane.
A further calculation shows that U has constant Gauss curvature −1.
Let us emphasize that points of the extended real axis R∪{∞} are not
points in U , but rather comprise a “circle at infinity” compactifying U
to a closed ball.

The Möbius group PSL2(R) was already defined in the previous
lecture, and an element of this group, which is called a Möbius trans-
formation, acts on U by fractional linear transformation:

(
a b
c d

)
: z 7→ az + b

cz + d
.

One directly checks that U is preserved by each Möbius transformation,
that this is in fact an action by orientation-preserving isometries of U ,
and that PSL2(R) is indeed the full group of orientation-preserving
isometries of U , where the last assertion follows from the easily verified
fact that the Möbius group acts transitively on the tangent space to U .
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One reason that the upper half-plane is useful for calculations in hy-
perbolic geometry is this simple expression for the action of isometries.

Since the fixed points z = (az + b)/(cz + d) evidently satisfy the

equation 2cz = a− d±
√

(a + d)2 − 4 for c 6= 0 (and for c = 0, we may
conjugate by an appropriate Möbius transformation B noting that the
fixed points of BAB−1 are the images of the fixed points of A under
B), direct calculation shows that there is the following trichotomy on

A =

(
a b
c d

)
∈ PSL2(R):

• if |a + d| < 2, then A is said to be elliptic, and there is unique fixed
point in U with A described as rotation about this fixed point;

• if |a + d| = 2, then A is said to be parabolic, and there is a unique
fixed point at infinity;

• if |a + d| > 2, then A is said to be hyperbolic, and there is a pair of
fixed points at infinity, which determine a unique geodesic in U with A
acting as translation along this geodesic. Furthermore, the translation
length ℓA along this invariant geodesic is given by 2cosh ℓA

2
= |a+ d|.

The elliptic and hyperbolic cases are analogues of the familiar rota-
tions and translations in Euclidean geometry, but the parabolic case
is a novel aspect compared to the familiar case. (We shall comment
further on parabolic transformations later in this lecture.)

Our second model for the hyperbolic plane is the Poincaré disk

D = {z ∈ C : |z| = x2 + y2 < 1}
endowed with the metric ds2 = 4(dx2 + dy2)/(1 − |z|2)2, so this is
again a model conformal to the Euclidean metric on the open unit
disk in C. Whereas the upper half-plane is useful for calculations, the
Poincaré disk is useful for drawing pictures in part because the point
∞ at infinity in U is seen to be “just another point” in the unit circle
S1
∞ in C, the circle at infinity, which compactifies D to the closed unit

disk in C.
There are explicit inverse isometries, called the Cayley transform,

between U and D as follows:

U → D,

z 7→ z − i

z + i

D → U .

w 7→ i
1 + w

1 − w

which map the respective points 0, 1,∞ at infinity in U to the points
−1,−i,+1 ∈ S1

∞. The action of the Möbius group on D is given by
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conjugating the action of fractional linear transformations on U by the
Cayley transform.

Our third model for the hyperbolic plane is useful both for figures and
for calculations as we shall see. It is described as a subset of Minkowski
3-space, which is defined to be R3 endowed with the indefinite pairing

< ·, · > : R3 × R3 → R

< (x, y, z), (x′, y′, z′) > 7→ xx′ + yy′ − zz′,

where x, y, z denote the usual coordinates on R3.

Figure 4 Minkowski 3-space

There are several characteristic subspaces of Minkowski 3-space, which
are illustrated in Figure 4, as follows:

the upper sheet of the hyperboloid

H = {u = (x, y, z) ∈ R3 : < u, u >= −1 and z > 0};

the open positive light-cone

L+ = {u = (x, y, z) ∈ R3 : < u, u >= 0 and z > 0};

and the hyperboloid of one sheet

H = {u = (x, y, z) ∈ R3 : < u, u >= +1}.

We shall say that an affine plane Π in R3 is elliptic, parabolic, or
hyperbolic, respectively, if it is so in the sense of the Greeks, i.e., the
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corresponding conic section Π ∩ (L+ ∪ −L+) has the corresponding
attribute. One checks without difficulty that a plane

Π = {u ∈ R3 : < u, v >= ξ}
with Minkowski normal v, for some ξ ∈ R, is elliptic, parabolic, or
hyperbolic, respectively, if and only if < v, v > is negative, vanishes,
or is positive. One furthermore easily proves:

Lemma 2.1. The Minkowski pairing < ·, · > restricts to a bilinear
pairing on Π that is definite, degenerate, or indefinite, respectively,
precisely when Π is elliptic, parabolic, or hyperbolic.

In particular, the upper sheet H of the hyperboloid has all tangent
planes elliptic and so inherits an honest Riemannian metric from the
indefinite pairing on Minkowski space. The upper sheet H together
with this induced metric forms our third model for the hyperbolic plane.

Identify the closed unit disk D∪S1
∞ with the horizontal disk at height

zero in Minkowski space. An isometry between H and D is given by
central projection ·̄ from the point (0, 0,−1), i.e., the line segment with
endpoints (0, 0,−1) and v ∈ H meets the unit disk D at the point v̄;
that is,

·̄ : H → D

(x, y, z) 7→ (x, y, z) =
1

1 + z
(x, y)

establishes an isometry between these two models, where the inverse is
given by

D → H

(x, y) 7→ 1

1 − x2 − y2
(2x, 2y, 1 + x2 + y2).

Furthermore, this projection extends to a natural mapping

·̄ : L+ → S1
∞

(x, y, z) 7→ (x, y, z) =
1

x2 + y2
(x, y, 0),

and the fiber over a point of S1
∞ is a corresponding ray in L+.

Finally composing this central projection with the Cayley transform,
explicit formulas that will be useful in subsequent calculations give
isometries:

H → U
(x, y, z) 7→ (−y + i)/(z − x)
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and

U → H

x+ iy 7→ 1

2y
(x2 + y2 − 1,−2x, x2 + y2 + 1)

The action of PSL2(R) on H can be computed by conjugating its
action on U by these isometries, and one finds that PSL2(R) is exactly
the group of real three-by-three matrices of determinant one which
preserve the Minkowski pairing as well as preserving the upper sheet
H, i.e., PSL2(R) is isomorphic to the component SO+(2, 1) of the
identity in SO(2, 1), which is of index four (preserving not only the
orientation of R3 but also the upper sheet H of the hyperboloid).

More explicitly, we may identify R3 with the collection B2(R) of all
real symmetric bilinear forms on two indeterminates via

R3 → B2(R)

(x, y, z) 7→
(
z − x y
y z + x

)
,

and then the action of A ∈ PSL2(R) is simply given by

A : B2(R) → B2(R)

B 7→ AtBA,

where At denotes the transpose of A. Thus, the natural action of the
Möbius group by change of basis for bilinear forms coincides with its
action as hyperbolic isometries. (This theme will be further developed
in the next lecture.)

Since an isometry of Minkowski space preserving an affine plane must
preserve its normal vectors, we conclude:

Lemma 2.2. If a Möbius transformation A leaves invariant an affine
plane which is elliptic, parabolic, or hyperbolic, respectively, then A
itself must also be elliptic, parabolic, or hyperbolic.

Geodesics in H are intersections with planes through the origin whose
Minkowski normal lies in H as one can check directly, and several
standard formulas relating Minkowski inner products and hyperbolic
lengths and angles can then also be directly derived:

Lemma 2.3. If u, v ∈ H, then

< u, v >2= cosh2δ,



14 R. C. PENNER

where δ is the hyperbolic distance between u and v. If u ∈ H and v ∈ H,
then

< u, v >2= sinh2δ,

where δ denotes the hyperbolic distance from u to the geodesic deter-
mined by v. If u, v ∈ H, then

< u, v >2=

{
cosh2δ, if the corresponding geodesics are disjoint;

cos2θ, if the corresponding geodesics intersect,

where in the first case, δ is the infimum of hyperbolic distances between
points on the two geodesics, and in the second case, θ is their angle of
intersection.

Lemma 2.4. Given three distinct rays r1, r2, r3 ⊂ L+ from the origin,
there are unique uj ∈ rj so that < uj, uj >= −1 for i 6= j, i, j = 1, 2, 3.

Proof. Choose any vj ∈ rj for i = 1, 2, 3. We seek αj ∈ R>0 so that
< αjvj, αjvj >= −1 for i 6= j, i.e., αjαj = − < vj , vj >

−1, and there is
a unique positive solution, namely,

αj =

√
− < vj, vk >

< vj , vj > < vj, vk >
, for {i, j, k} = {1, 2, 3}.

�

Corollary 2.5. The group SO+(2, 1) acts simply transitively on posi-
tively oriented triples of distinct rays in L+.

This is the version in Minkowski space of the familiar 3-effectiveness
of the action of the Möbius group on triples of positively oriented points
in the circle at infinity. In particular, it follows that any Möbius trans-
formation fixing three points at infinity is necessarily the identity. We
remark that we shall use Corollary 2.5 without apology to normalize
subsequent calculations and directly compute various quantities with
a decidedly nineteenth-century ethos.

We finally come to a definition that is basic for our considerations.
A “horocycle” in U is either a Euclidean circle tangent to the real axis
or a horizontal Euclidean line parallel to the real axis. Applying the
Cayley transform, a horocycle in D is thus a Euclidean circle tangent
to S1

∞.
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This definition leaves something to be desired since we relied on
the underlying Euclidean metric of the Riemannian manifold U , so
here is a better and more invariant definition: Choose a point p in the
hyperbolic plane and a tangent direction v at p, and consider a family of
hyperbolic circles whose radius and center diverge in such a controlled
manner as to pass through p with tangent direction v; such a sequence
of hyperbolic circles has a well-defined limit, defined to be a horocycle.
(Of course, an analogous family of Euclidean circles in the Euclidean
plane limits to a Euclidean line, so the existence of horocycles is truly
a new phenomenon in hyperbolic geometry.) Thus, a horocycle in D is
indeed a Euclidean circle tangent to S1

∞, and the point of tangency is
called the center of the horocycle, with a similar remark and definition
for U .

One can check that yet another invariant definition is that a horo-
cycle is a smooth curve in the hyperbolic plane of constant geodesic
curvature one.

A direct calculaton using the formulas given earlier allow the calcu-
lation of horocycles in Minkowski space, and one finds:

Lemma 2.6.

L+ → {horocycles in H}
u 7→ h(u) = {v ∈ H :< u, v >= −1/

√
2}

establishes an isomorphism between points of L+ and the collection
of all horocycles in H. Furthermore, the center of the corresponding
horocycle h̄(u) in D is ū ∈ S1

∞, and the Euclidean radius of h̄(u) in D
is 1

1+z
√

2
, where u = (x, y, z).

The funny choice of constant −1/
√

2 in Lemma 2.6 will be explained
later; any negative constant would do just as well here (and this nor-
malization differs from that in our papers).

Let us finally re-consider the action of A ∈ SO+(2, 1) ≈ PSL2(R)
on Minkowski space now armed with this notion of horocycle. As a
unimodular linear map acting on R3, A has at most three non-zero
eigenvalues, and there are various cases:

• A is hyperbolic if it has an eigenvalue λ with |λ| 6= 1, so λ is real
and positive with corresponding simple eigenvector (ray) contained
in L+; there is one other eigenvector contained in L+ with eigenvalue
λ−1, and these two eigenvectors correspond to the ideal points at
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infinity of the invariant geodesic; there is a third eigenvector on H
with eigenvalue 1 which corresponds to the invariant geodesic;

• A is parabolic if there is a unique eigenvector contained in L+

with eigenvalue 1 and no eigenvector on H; by Lemma 2.6, there
is a corresponding foliation of H by horocycles which is leafwise
invariant under A;

• A is elliptic if all its eigenvalues lie on the unit circle with a unique
eigenvector in H corresponding to the unique fixed point of A in H.

3. The Farey tesselation and Gauss product

Before pressing forward with geometry and Teichmüller theory, we
cannot resist digressing here to briefly discuss topics from algebraic
number theory. The first part of this lecture is explicated in [18], and
the appendix [59] treats the latter part of this lecture in much greater
detail with complete proofs and with a discussion of the background
number theory from first principles. See [11] for a detailed treatment
of quadratic forms.

Let us begin in the upper half-space model U and consider the horo-
cycle hn of Euclidean diameter one centered at n ∈ Z ⊂ R, for each
n ∈ Z. Thus, hn is tangent to hn±1 and is disjoint from the remaining
horocycles. We also add the horocycle h∞ centered at infinity given by
the horizontal line at height one, which is tangent to each hn.

Two consecutive horocycles hn, hn+1 determine a triangular region
bounded by the interval [n, n + 1] ⊂ R together with the horocyclic
segments connecting the centers of the horocycles to the point of tan-
gency of hn and hn+1. There is a unique horocycle contained in such
a triangular region which is tangent to hn and hn+1 as well as tangent
to the the real axis, and we let hn+ 1

2

denote this horocycle, which is

evidently tangent to the real axis at the half-integer point n + 1
2

and
of Euclidean diameter 1

4
. We may continue recursively in this manner,

adding new horocyles tangent to the real axis and tangent to pairs of
consecutive tangent horocycles in order to produce a family of horocy-
cles H in U . See Figure 5a.
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Figure 5a Horocyclic packing of upper half-space.

Figure 5b The Farey tesselation in upper half-space.

Lemma 3.1. There is a unique horocycle in H centered at each ratio-
nal point Q ⊂ R, and the horocycle centered at p

q
∈ Q has Euclidean

diameter 1
q2 , where p

q
is written in reduced form except with n ∈ Z writ-

ten as n
1
. Furthermore, the horocycles in H centered at distinct points

p

q
, r

s
∈ Q are tangent to one another if and only if ps−qr = ±1, and in

this case, the horocycle in H tangent to these two horocycles is centered
at p+r

q+s
∈ Q.

It is not hard to prove this lemma inductively starting with the
second sentence. In fact, this result was discovered by the mineralogist
John Farey and solved the long-standing problem of giving a one-to-
one enumeration of the rational numbers. After Farey published his
empirical findings, Cauchy essentially immediately supplied the proofs.
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Now define the Farey tesselation to be the collection of hyperbolic
geodesics in U that connect centers of tangent horocyles in H; see
Figure 5b. Thus, the Farey tesselation of U is a countable collection
of geodesics that decompose U into regions called ideal triangles, i.e.,
regions bounded by three geodesics pairwise sharing ideal points at
infinity. Figure 6 illustrates the Farey tesselation in D, i.e., the image
under the Cayley transform, which we shall denote τ∗ and regard as a
set of geodesics in D.

Figure 6 The Farey tesselation in the Poincaré disk.

The Möbius group PSL2(R) contains the discrete group PSL2(Z)
consisting of all two-by-two integral matrices of determinant one again
modulo the equivalence relation identifying the matrix A with its neg-
ative −A. This subgroup is called the (classical) modular group and
plays a basic role in number theory, as we shall partly explain in this
lecture.

Lemma 3.2. The modular group leaves invariant the Farey tesselation
τ∗, mapping geodesics in τ∗ to geodesics in τ∗ and complementary ideal
triangles to complementary ideal triangles, and any Möbius transfor-
mation leaving invariant τ∗ in this manner lies in the modular group.
Furthermore, the modular group acts simply transitively on the oriented
edges of τ∗. A generating set is given by any pair of

S =
( 0 −1

1 0

)
, T =

( 1 1
0 1

)
, U =

( 1 1
1 0

)
,

where T−1 = SUS and U−1 = STS; a presentation in the generators
S, T is given by S2 = 1 = (ST )3, so the modular group is abstractly the
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free product Z/2Z ∗Z/3Z. A fundamental domain for the action of the
modular group on U is given by {x+ iy ∈ U : x2 +y2 > 1 and |x| < 1

2
}.

An especially beautiful combinatorial fact is that the continued frac-
tion expansion of a rational number p

q
can be read off from the sequence

of right or left turns in the Farey tesselation connecting the point i to
p

q
. Let us just illustrate with an example, the rational 5

13
. Starting

from i one makes the following sequence of turns right (R) or left (L)
in triangles of τ∗ to arrive at 5

13
: RRLRL. Reading off the number of

consecutive turns 2(R), 1(L), 1(R), 1(L), we calculate the continued
fraction expansion:

5

13
=

1

2 +
1

1 +
1

1 +
1

1 + 1

.

The proof of this general fact (which follows from Lemmas 3.1-3.2 and
the definition of continued fractions) is left to the reader.

One number-theoretic aspect of the current discussion involves so-
called elliptic curves, namely, discrete subgroups Λ of C of rank two,
also called lattices. The quotient of C by Λ is a flat torus together
with a distinguished point corresponding to 0 ∈ C, and up to con-
formal equivalence of this torus, we may take Λ to be generated by
the unit 1 ∈ C and a complex number τ of positive imaginary part,
i.e., the analogue of Teichmüller space for elliptic curves is precisely
the upper half-plane U . The mapping class group of this torus-with-
distinguished-point is precisely the modular group PSL2(Z) acting by
fractional linear transformation on U , and the analogue of Riemann’s
moduli space is thus U/PSL2(Z), which is called the modular curve
and is illustrated in Figure 7. It is not quite a manifold, rather, it is an
orbifold, namely, neighborhoods of its point are modeled on quotients
of Euclidean space modulo a finite group action, in this case, the finite
groups being the trivial group, Z/2Z, and Z/3Z.



20 R. C. PENNER

Figure 7 The modular curve.

In fact, we may remove the distinguished point of the elliptic curve to
produce a once-punctured torus, whose Teichmüller space is U , whose
mapping class group is PSL2(Z), and whose moduli space is the mod-
ular curve as we shall see in Lecture 5. The modular curve is the
unique moduli space of a surface which is also a surface or at least a
two-dimensional orbifold.

We shall only require the Farey tesselation τ∗ and its invariance under
the modular group PSL2(Z) in the sequel and have discussed these
other aspects just because they are interesting and beautiful.

Our principal topic for this lecture is the “Gauss product” of suitable
binary quadratic forms, to which we finally turn our attention, and
since this material is developed from first principles in the appendix,
our discussion here will just serve to introduce the main ideas (as well
as include a basic remark we neglected to mention explicitly in the
appendix).

Recall the space B2(R) of symmetric real bilinear pairings discussed
in the previous lecture, where corresponding to the point (x, y, z) in
Minkowski 3-space, we have considered the pairing(

z − x y
y z + x

)
∈ B2(R)

with its corresponding quadratic form (z − x)ξ2 + 2yξη + (z + x)η2,
where ξ, η denote indeterminates.

We shall now restrict our attention to the subspace B2(Z) corre-
sponding to integral binary forms and shall let the integral quadratic
form aξ2 + bξη + cη2, where a, b, c ∈ Z, be denoted simply [a, b, c].
We say that [a, b, c] is primitive if a, b, c have no common divisors,
i.e., gcd{a, b, c} = 1, and define the discriminant of [a, b, c] to be
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D = b2 − 4ac. In particular, b is even if and only if D is equiva-
lent to zero modulo four, and b is odd if and only if D is equivalent
to one modulo four. The quadratic form [a, b, c] is said to be definite
or imaginary if D < 0, and it is said to be indefinite or real if D > 0;
otherwise if D = 0, it is said to be degenerate. The modular group
acts on integral quadratic forms by change of basis, as in the previ-
ous lecture, and leaves invariant both primitivity of the form as well
as the discriminant as one easily confirms. We let [[ a, b, c ]] denote the
corresponding orbit and consider the set

G(D) = { [[ a, b, c ]] : [a, b, c] is primitive of discriminant D}.
Gauss showed that for each discriminant D, G(D) has the structure of
a finite abelian group, and we shall formulate a version of this group
law presently. (It is an important open problem to explicitly calculate
the orders of these groups, the so-called “class numbers”, cf. [11].)

We say that two classes of integral quadratic forms [f1], [f2] are
unitable if their respective discriminants D1, D2 satisfy Dj = t2jd for
some tj ∈ Z, i.e., if D1D2 is the square of some integer, and in this
case, we may define t′j = tj/gcd{t1, t2}. Two unitable forms f1, f2 are
said to be concordant if there are respective representatives of their
PSL2(Z)-orbits of the form

[a1, t
′
1b, t

′
1
2
a2c] and [a2, t

′
2, t

′
2
2
a1c].

Given concordant forms f1, f2, we define the (Gauss) product of their
respective classes [f1], [f2] to be

[f1][f2] = [[ a1a2, b, c ]] .

Theorem 3.3. Given two unitable classes, there exist concordant rep-
resentatives, and the class of the product is well-defined. Fixing a
square-free discriminant d and setting S(d) =

∐
t≥1 G(t2d), the product

gives S(d) the structure of an abelian semigroup, and the restriction of
the product gives G(t2d) < S(d) the structure of a finite abelian group,
for each t ≥ 1.

As we shall see, the elementary yet crucial geometric point about
concordant forms is:

Lemma 3.4. Suppose that [aj, bj , cj], for i = 1, 2, are primitive forms
of respective discriminants D1, D2, where b1b2 ≥ 0. Then the two forms
are concordant if and only if the following two conditions hold:
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• D1b
2
2 = D2b

2
1, and thus Dj = t2jd for some tj ∈ Z, and we define

bj = bt′j, for i = 1, 2;

• 4a1a2|b2 − d(gcd{t1, t2})2.

Turning attention now to the case of definite quadratic forms (which
we should remark is the “easy” case of quadratic forms, where our
understanding is much more complete), the key geometric point is that
integral points (x, y, z) of Miknowski 3-space which lie inside of L+

(i.e., have positive z-coordinate and negative Minkowski length) at once
correspond to definite integral quadratic forms [z − x, 2y, z + x] as
above and to suitable points of H, namely, the ray from the origin
in Minkowski 3-space through the integral point (x, y, z) inside L+

meets H in the point 1/(z2 − x2 − y2)(x, y, z). The PSL2(Z)-orbit
[[ z− x, 2y, z+ x ]] thus corresponds to a point of the modular curve, so
the Gauss product defines an abelian group structure on appropriate
subsets of the modular curve. We ask (and answer) whether this Gauss
product can be understood geometrically in these terms.

The critical property of concordant forms is that the first condition
in Lemma 3.4 is projectively invariant, i.e., it is defined on projective
classes of definite quadratic forms and hence determines some condition
on points of H.

By definition, a definite quadratic form [a, b, c] has exactly two roots
of az2 + bz + c = 0, and exactly one of these roots

ω[a,b,c] = − b

2a
+i

√
−D
4a2

=
p

q
+i

√
r

s
∈ {z = x+iy : x, y2 ∈ Q and y > 0},

called the primitive root, lies in U . (One can identify elliptic curves with
quadratic forms by identifying the primitive root with the invariant τ
of the elliptic curve discussed above, and then this locus of primitive
roots of definite integral quadratic forms corresponds to the collection
of elliptic curves that “admit complex multiplication”, cf. [12].)

Lemma 3.5. Given an integral point (x, y, z) of Minkowski 3-space in-
side L+ with corresponding point v ∈ H, the Cayley transform in U of
the central projection v̄ ∈ D agrees with the primitive root ω[z−x,2y,z+x].

Furthermore, given a point ω = p

q
+ i

√
r
s
, the primitive form propor-

tional to [q2s,−2pqs, p2s+ q2r] has ω as its primitive root.

The proof is a somewhat involved but elementary calculation left
to the reader (using the formulas in the previous section); it is the
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first part of this lemma that we neglected to explicitly mention in the
appendix. We are led to consider the level sets of D/a2, D/c2 and
especially D/b2, for if two primitive definite forms lie on a common
level set of one of these functions, then they are unitable. Setting
ω = p

q
+ i

√
r
s

= u+ iv ∈ U , we compute from Lemma 3.5 that

• D/a2 = −α2 ⇔ r
s

= α2

4
⇔ v = α

2
;

• D/b2 = −β2 ⇔ r
s

= β2 p2

q2 ⇔ v = ±βu;

• D/c2 = −γ2 ⇔ p2

q2

√
s
r

+
√

r
s

= 2γ−1 ⇔ u2 + (v − γ−1)2 = γ−2,

where α, β, γ > 0. These respective loci in U are thus horizontal lines,
rays from the origin, and circles tangent to R at zero as illustrated in
Figure 8. The first and last cases are the familiar horocycles centered
at zero and infinity, and the second case is new to us and bears further
discussion.

Figure 8 Horocycles and hypercycles in upper half-space.

An δ-hypercycle to a geodesic in U is a component of the locus of
points at distance δ ≥ 0 from the geodesic, and there are thus two
δ-hypercycles for each δ > 0 while the 0-hypercycle is just the geodesic
itself. Put another way, one can check that a hypercycle is a locus of
constant geodesic curvature between zero and one, and one can thus
think of hypercycles as interpolating between geodesics (of curvature
zero) and horocycles (of curvature one). In particular, hypercycles to
the imaginary ray in U are precisely Euclidean rays from the origin,
i.e., the second case above corresponds to hypercycles. Projections to
the modular curve of horocycles centered at infinity or of hypercycles
to the imaginary ray will be called simply horocycles and hypercycles
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in the modular curve as illustrated respectively on the right and left in
Figure 9.

Figure 9 One hypercycle and several horocycles in the modular curve.

Corollary 3.6. Two classes of definite primitive quadratic forms are
unitable if and only if they lie on a common hypercycle in the modular
curve. Furthermore, if the classes lie on a common horocycle in the
modular curve, then they are unitable as well.

It is worth emphasizing that two primitive definite quadratic forms
on a common hypercycle may not be concordant for that hypercycle,
i.e., the second condition in Lemma 3.4 does not follow from the first.

We say that a definite form f translates to another form f ′ if there

is some element

(
a b
0 d

)
of the modular group sending f to f ′. Here

is our promised geometric description of the Gauss product for definite
forms:

Theorem 3.7. Suppose that f1, f2 are concordant primitive definite
forms with corresponding hypercycle h. Then the product [f1][f2] is
represented by the point f ∈ h closest to the origin with the property
that whenever f1 and f2 translate, possibly by different elements of the
modular group, to concordant forms on a common hypercycle h′, then
f also translates to h′.
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It would be most interesting to formulate a corresponding geometric
description of the Gauss product for indefinite forms. In this case, the
natural geometric invariant of an indefinite form [a, b, c] is the hyper-
bolic geodesic connecting the two real roots of az2 + bz + c = 0.

4. Basic formulas

Throughout this lecture, which is principally based on [53] but also
includes calculations from [42, 58], we shall conveniently normalize our
calculations using Corollary 2.5, and to this end, we introduce a con-
venient basis for Minkowski 3-space as follows. Define the standard
light-cone basis

u =
1√
2

(−1, 0, 1),

v =
1√
2

(1, 0, 1),

w =
√

2 (0,−1, 1),

so that u, v, w ∈ L+, < u, v > = < u,w > = < v,w > = −1, and

u 7→ 0, v 7→ ∞, w 7→ 1

under the Cayley transform. Furthermore, the standard basis vectors
in R3 are expressed in the light-cone basis as

(1, 0, 0) =
1√
2
(v−u), (0, 1, 0) =

1√
2
(u+v−w), (0, 0, 1) =

1√
2
(v+u).

Given a pair of horocycles h1, h2, say in D, with distinct centers,
consider the geodesic γ in D connecting their centers. Let δ denote
the signed hyperbolic distance along γ between the points h1 ∩ γ and
h2 ∩ γ, where the sign of δ is taken to be positive if and only if h1 and
h2 are disjoint. Define the lambda length of h1, h2 to be

λ(h1, h2) =
√

exp δ.

These are our basic invariants, and essentially all of our calculations
will be performed using them.

Put another way, a decoration on a hyperbolic geodesic is the spec-
ification of a pair of horocycles, one centered at each ideal point of
the geodesic, and the lambda length is an invariant of a decorated
geodesic. Thus though a hyperbolic geodesic has infinite length, a
decoration gives a way to truncate the geodesic and thereby define a
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sensible length, the lambda length. These invariants are so fundamen-
tal to our treatment that we shall often simply identify a geodesic with
its lambda length when no confusion may arise.

Lemma 4.1. Suppose that u1, u2 ∈ L+ do not lie on a common ray in
L+ and let h(u1), h(u2) be the horocycles corresponding to these points
via affine duality in Lemma 2.6. Then the lambda length is given by

λ(h(u1), h(u2)) =
√− < u1, u2 >.

The identification of horocycles with points of L+ via affine duality
in Lemma 2.6 is therefore also geometrically natural in this sense.

Proof. We may normalize using the standard light-cone basis so that
u1 = t1u and u2 = t2v for some t1, t2 ∈ R>0. We seek the points
ζj ∈ h(uj), for j = 1, 2, on the geodesic connecting the centers of
h(u1), h(u2), i.e., we seek ζj = xju+ yjv so that

−t1y1 = < ζ1, t1u > = − 1√
2

= < ζ2, t2v > = −t2x2

and ζ1, ζ2 ∈ H, i.e.,

−2xjyj = < ζj, ζj > = −1. for j = 1, 2.

Solving these equations, we find

ζ1 =
t1√
2
u +

1√
2t1

v,

ζ2 =
1√
2t2

u +
t2√
2
v.

Thus from Lemma 2.3, we have

cosh2δ = < ζ1, ζ2 >
2 =

[1

2
(t1t2 + (t1t2)

−1)
]2
,

so < u1, u2 > = < t1u, t2v > = −t1t2 gives

exp ± δ = − < u1, u2 > .

Since δ → ∞ as t1 → ∞ or t2 → ∞ by the last part of Lemma 2.6, we
must take the plus sign, completing the proof. �

Armed with this result, direct calculation in the upper half-plane
yields:
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Corollary 4.2. Given horocycles hj in U with distinct centers xj ∈ R
of respective Euclidean diameters ∆j, for j = 1, 2, the lambda length is
given by

λ(h1, h2) =
|x1 − x2|√

∆1∆2

;

likewise, given the hororcycle h centered at infinity of height H, the
lambda length is given by

λ(h, h1) =

√
H

∆1
.

Furthermore, if A =

(
a b
c d

)
is a Möbius transformation with Ah1

centered at Ax1 ∈ R, then Ah1 has Euclidean diameter ∆1/(cx1 + d)2;
likewise, if Ax1 = ∞, then Ah1 has height ∆−1

1 /c2.

We conclude that Euclidean diameters of horocycles in upper half-
space scale by derivatives of Möbius transformations (which will serve
to motivate a later definition, cf. Theorem 8.8).

The lambda length is thus an invariant of a pair of horocycles or
of a decorated geodesic, and we turn our attention next to triples of
horocycles. Just as in Lemma 2.4, given a triple of positive numbers
a, b, e, there are unique positive multiples αu, βv, γw of the standard
light-cone basis realizing

< αu, βv > = −e2, < αu, γw > = −a2, < βv, γw > = −b2,

namely,

α =
ae

b
, β =

be

a
, γ =

ab

e
.

Corollary 4.3. Triples of lambda lengths give a parametrization of
Möbius orbits of triples of horocycles with distinct centers.

Lemma 4.4. Given a triple of horocycles h1, h2, h3 with distinct cen-
ters, let λj = λ(hk, hℓ) denote the lambda lengths and let γj denote the
geodesic connecting the centers of hk, hℓ, for {j, k, ℓ} = {1, 2, 3}. Then
the hyperbolic length of the horocyclic segment in hj between γk and γℓ

is given by
λj

λkλℓ
.
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Proof. Again, we use Corollary 2.5 and the earlier calculation to ar-
range that the three points in L+ corresponding to the triple of horo-
cycles are ae

b
u, be

a
v, ab

e
w. We seek the point ζ = xu+ yv ∈ H so that

− 1√
2

= < ζ,
be

a
v > =

be

a
< ζ, v > = −be

a
x,

i.e. x = 1√
2

a
be

. Now using −1 = < ζ, ζ >, we find y = 1
2x

, so

ζ =
a

be
u+

be

2a
v = (− a

2be
+
be

2a
, 0,

a

2be
+
be

2a
)

as a vector in R3. Use the explicit mapping H → U given by (x, y, z) 7→
( y

z−x
, 1

z−x
) to compute the imaginary part of the image of ζ to be be

a
;

since u, v, w respectively map to 0,∞, 1, the hyperbolic segment lying
in h( be

a
v) maps to the horizontal segment of Euclidean length one at

height be
a
, which has hyperbolic length a

be
using the expression for the

hyperbolic metric in U . The other formulas follow by symmetry. �

A decoration on an ideal triangle is a triple of horocycles, one centered
at each ideal point of the triangle. Define a sector to be an end of an
ideal triangle, so associated with a decorated ideal triangle, each sector
has a corresponding horocyclic arc as above, whose length is called
the h-length of the sector. We have just shown that the h-length of a
sector is the opposite lambda length divided by the product of adjacent
lambda lengths, and it was to guarantee this formula that we took the
funny constant −1/

√
2 in Lemma 2.6. (We should also mention that

this corrects Proposition 2.8 in [53].)
It follows from Lemma 4.4 that the product of the h-lengths of two

sectors in a decorated ideal triangle is the reciprocal of the square of
the lambda length of the decorated geodesic connecting the sectors,
i.e., in the notation of Lemma 4.4, we have

λj

λkλℓ

λk

λjλℓ
= 1

λ2
ℓ

.

Lemma 4.5. Given u1, u2, u3 ∈ L+ no two of which lie on a common
ray in L+, define λj = λ(h(uk), h(uℓ)), for {j, k, ℓ} = {1, 2, 3}. The
affine plane containing u1, u2, u3 is elliptic if and only if the strict tri-
angle inequalities hold among λ1, λ2, λ3, it is parabolic if and only if
some triangle equality holds, and it is hyperbolic if and only if some
weak triangle inequality fails.

Proof. The tangent space to the affine plane is spanned by v1 = u1−u3

and v2 = u2 − u3, and we compute that < vj , vj > = 2λ2
k, for {j, k} =
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{1, 2} while< v1, v2 >= λ2
1+λ

2
2−λ2

3. The determinant of the Minkowski
pairing restricted to the affine plane is thus

< v1, v1 > < v2, v2 > − < v1, v2 >
2

= 4λ2
1λ

2
2 − (λ2

1 + λ2
2 − λ2

3)
2

= −λ4
1 − λ4

2 − λ4
3 + 2λ2

1λ
2
2 + 2λ2

1λ
2
3 + 2λ2

2λ
2
3

= (λ1 + λ2 + λ3)(λ1 + λ2 − λ3)(λ1 + λ3 − λ2)(λ2 + λ3 − λ1),

and the result then follows from Lemma 2.1 since at most one factor
in the last expression can be non-positive for λ1, λ2, λ3 > 0. �

Lemma 4.6. Given u1, u2, u3 ∈ L+, define λj = λ(h(uk), h(uℓ)), for
{j, k, ℓ} = {1, 2, 3} and let h1, h2, h3 denote the corresponding horocy-
cles which we assume have pairwise distinct centers. Then there is a
point equidistant to h1, h2, h3 if and only if λ1, λ2, λ3 satisfy the strict
triangle inequalities, and in this case, the equidistant point ζ is unique.
Furthermore in this case, let αj denote the h-length of the sector cor-
responding to hj and let γj be the geodesic connecting the centers of
hk, hℓ, for {j, k, ℓ} = {1, 2, 3}. Then the geodesic connecting ζ to the
center of hj is at signed distance 1

2
(α1 + α2 + α3) − αℓ from γk along

hj, where the sign is positive if and only if ζ lies on the same side of
γk as the center of hℓ, for {j, k, ℓ} = {1, 2, 3}.

Proof. As usual, we shall compute in the standard light-cone basis
u, v, w and arrange that the three points in L+ corresponding to the
triple of horocycles are ae

b
u, be

a
v, ab

e
w. We seek ζ = xu + yv + zw ∈ H

so that

< ζ,
ae

b
u > = < ζ,

be

a
v > = < ζ,

ab

e
w > .

Define A = y+ z, B = x+ z, C = x+ y, so we must solve the equation

2 = A(B + C − A) +B(A+ C − B) + C(A+B − C)

where A = b2

e2C and B = a2

e2C. Thus,

2 = C2
[b2
e2

(
a2

e2
+ 1 − b2

e2
) +

a2

e2
(
b2

e2
+ 1 − a2

e2
) + (

b2

e2
+
a2

e2
− 1)

]

= C2/e4
[
2a2b2 + 2a2e2 + 2b2e2 − a4 − b4 − e4

]

= C2/e4 (a+ b+ e)(a+ b− e)(a + e− b)(b+ e− a),

so there is indeed a solution if and only if a, b, e satisfy all three possible
strict triangle inequalities. Furthermore in this case setting

K = (a+ b+ e)(a + b− e)(a + e− b)(b+ e− a),
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we find

(A,B,C) = ±
√

2

K
(b2, a2, e2)

and must take the positive sign to guarantee a positive z-coordinate in
Minkowski 3-space. Thus, the unique equidistant point is given by

ζ =

√
1

2K

[
(a2 + e2 − b2)u+ (b2 + e2 − a2)v + (a2 + b2 − e2)w

]
.

Let us find a Minkowski normal n for the hyperbolic plane through
the origin determining the geodesic γ passing through ζ and u. To this
end, < n, u > = 0 gives n = xu + yv − yw, and < n, ζ > = 0 further
gives

0 = −
√

2K < n, ζ >

= (b2 + e2 − a2)(x− y) + (a2 + b2 − e2)(x+ y)

= 2b2x+ 2(a2 − e2)y.

A normal to the plane containing γ is thus given by

n = (e2 − a2)u+ b2v − b2w.

Next, we seek a point r = xu+yv+zw ∈ L+ so that the ideal points
of γ in D are r̄, ū ∈ S1

∞, that is,

0 = − < n, r > = y(e2 − a2 − b2) + z(e2 + b2 − a2),

so r ∈ L+ gives

0 = xz (b2 + e2 − a2) + z2 (b2 + e2 − a2) + xz (a2 + b2 − e2).

Thus, xz = a2−b2−e2

2b2
z2, and it follows that such an r ∈ L+ is given by

r = (a2+b2−e2)(a2−b2−e2) u + 2b2(b2+e2−a2) v + 2b2(a2+b2−e2) w.
We may finally compute the length along the horocycle h(ae

b
u) be-

tween γ ∩ h(ae
b
u) and the geodesic asymptotic to the rays of u, v using

Lemma 4.4 and find this length to be

±
√

− < be
a
v, r >

< ae
b
u, r > < ae

b
u, be

a
v >

= ±
√

(a2 + b2 − e2)2

4a2b2c2

= ±1

2
(
a

be
+

b

ae
− e

ab
).

where the plus sign finally follows by comparison with the expression
above for ζ and the definition of the signed distance. The other formu-
las follow by symmetry. �
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We finally turn our attention to quadruples of horocycles with dis-
tinct centers, or put another way, decorated ideal quadrilaterals, that
is, ideal quadrilaterals with a horocycle centered at each ideal point.
There is again a basic calculation from which several results are derived
as follows:

Basic Calculation Consider multiples u′ = ae
b
u, v′ = be

a
v, w′ = ab

e
w

of the standard light-cone basis u, v, w as before. Given two further
positive real numbers c, d, we claim that there is a unique point ζ =
xu + yv + zw ∈ L+ so that < ζ, u′ > = −d2, < ζ, v′ > = −c2, and
ζ, w lie on opposite sides of plane through the origin containing u′ and
v′. Indeed, we have the equations

−d2 = < ζ, u′ > =
ae

b
< ζ, u > = −ae

b
(y + z),

−c2 = < ζ, v′ > =
be

a
< ζ, v > = −be

a
(x+ z),

which give y = bd2

ae
− z, x = ac2

be
− z. Now using that ζ ∈ L+, i.e.,

0 = xy + xz + yz, we find

0 =
abc2d2

abe2
+ z2 − z(

ac2

be
+
bd2

ae
) + (

ac2

be
− z)z + (

bd2

ae
− z)z

=
c2d2

e2
− z2.

Thus, z = ± cd
e
, and we must take the minus sign to have ζ on the

correct side of the plane through the origin containing u′ and v′. It
follows that the unique solution is given by

ζ =
c

eb
(ac+ bd)u +

d

ea
(ac+ bd)v − cd

e
w

completing the basic calculation and proving the claim, which is for-
malized in the next lemma.

Lemma 4.7. Given u1, u2 ∈ L+ and real numbers λ1λ2, λ2 satisfying
< u1, u2 > = −λ2

3, there is a unique point u3 on either side of the plane
through the origin containing u1, u2 so that < u2, u3 > = −λ2

1 and
< u1, u3 > = −λ2

2. Furthermore, the ratio λ1/λ2 uniquely determines
the ray in L+ containing u3.

Corollary 4.8. Five-tuples of lambda lengths give a parametrization
of Möbius orbits of quadruples of horocycles with distinct centers.
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Proof. Given an ideal quadrilateral, choose a diagonal decomposing it
into a pair of adjacent ideal triangles. Lambda lengths of the frontier
edges of the quadrilateral together with the lambda length of the chosen
diagonal uniquely determine the Möbius orbit of a decoration on the
ideal quadrilateral by the basic calculation. �

Several other important results also follow from the basic calculation:

Corollary 4.9. Suppose u1, u2, u3, u4 ∈ L+, where ū1, ū2, ū3, ū4 ∈ S1
∞

are distinct and occur in this counter-clockwise cyclic order, and let
λjk = λ(uj, uk) =

√− < uj, uk > for j, k = 1, 2, 3, 4, denote the lambda
lengths. Then:

a) [Ptolemy’s equation] λ13λ24 = λ12λ34 + λ14λ23;

b) [Cross ratio] the conformal map sending ū1 7→ 0, ū2 7→ 1, and
ū3 7→ ∞ also sends ū4 7→ −λ23λ14

λ12λ34
;

c) [Shear coordinate] letting γ be the geodesic with ideal points
ū1, ū3 and dropping perpendiculars from ū2 and ū4 to γ, the signed
distance between the points of intersection with γ is given by log λ23λ14

λ12λ34
,

where the sign is positive if and only if these points lie to the right
of one another along γ.

Proof. Adopting the notation of the basic calculation, we find

− < ζ,
ab

e
w > =

ab

e
[
c

be
(ac+ bd) +

d

ea
(ac+ bd)] =

(ac + bd)2

e2
,

proving part a).
For part b) again in the notation of the basic calculation, write ζ as

a vector in R3 as

ζ =
c

eb
(ac+ bd)u +

d

ea
(ac+ bd)v − cd

e
w

=
( 1√

2
(
d

ae
− c

be
)(ac+ bd),

√
2
cd

e
,

1√
2

(
d

ae
+

c

be
)(ac+ bd) −

√
2
cd

e

)

and apply the transformation H → U where (x, y, z) 7→ (−y+i)/(z−x)
to find the real part

−
√

2 cd
e

−
√

2 cd
e

+
√

2 c
be

(ac+ bd)
=

−bd
−bd+ ac + bd

= −bd
ac
.
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For part c), a Minkowski normal to the plane determining the geo-
desic asymptotic to u, v is evidently u + v − w, so by the last part of
Lemma 2.3, if another such Minkowski normal n = xu+yv+zw corre-
sponds to a perpendicular geodesic, then 0 = − < n, u+v−w > = 2z,
and furthermore, n ∈ H gives 1 = < n, n > = −2xy. Thus,
a perpendicular geodesic has corresponding unit normal of the form
n = xu− 1

2x
v.

In particular, the unit normal nw of the perpendicular geodesic as-
ymptotic to w thus has 0 = < nw, w > = < xu− 1

2x
v, w > = 1

2x
− x,

and so nw = 1√
2
u− 1√

2
v. Likewise again in the notation of the basic cal-

culation, the unit normal nζ of the perpendicular geodesic asymptotic
to ζ thus has

0 = < nζ , ζ >

= < xu− 1

2x
v,
c

be
(ac+ bd)u +

d

ae
(ac+ bd)v − cd

e
w >

= −x
[ d
ae

(ac+ bd) − cd

e

]
+

1

2x

[ c
be

(ac + bd) − cd

e

]

= −x[bd
2

ae
] +

1

2x
[
ac2

be
],

so x = ± 1√
2

ac
bd

, and furthermore comparing with the expression in

part b) for the cross ratio and by definition of the vector u, we see that
we must take the positive sign. Thus, we find that nζ = 1√

2
ac
bd
− 1√

2
bd
ac

.

Again applying the last part of Lemma 2.3, the desired distance δ
between the perpendiculars is given by

cosh2δ = < nw, nζ >
2

= <
1√
2
u− 1√

2
v,

1√
2

ac

bd
u− 1√

2

bd

ac
v >2

=
[1

2
(
bd

ac
+
ac

bd
)
]2
.

Thus, we find δ = ±log bd
ac

, and the positive sign follows again from the
expression for cross ratios in part b) and the definition of x. �

Notice the similarity of Corollary 4.9a with Ptolemy’s classical theo-
rem that a Euclidean quadrilateral inscribes in a circle if and only if the
product of diagonal lengths is the sum of products of opposite lengths.
Indeed, a more conceptual proof of Corollary 4.9a is as follows. Notice
that the asserted formula is in fact independent under scaling each of
the points u1, u2, u3, u4 separately, so we may scale these four points so
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as to lie at a common height in Minkowski 3-space, say at height one.
Since the induced metric is a scalar multiple of the usual metric on
this horizontal plane, and since the intersection with the light cone is
a round circle in the induced metric, Ptolemy’s classical result implies
our ideal hyperbolic version.

For our next formula, let us observe that the Möbius group action
on Minkowski space is through (Euclidean) volume-preserving linear
mappings SO+(2, 1) Thus, the volume of four points in L+ is a well-
defined invariant of such a four-tuple, and our next result calculates
this invariant, which will play a fundamental role in the sequel.

Corollary 4.10. Suppose u1, u2, u3, u4 ∈ L+, where ū1, ū2, ū3, ū4 ∈ S1
∞

are distinct and occur in this counter-clockwise cyclic order, and let
λjk = λ(uj, uk) =

√− < uj, uk > for j, k = 1, 2, 3, 4, denote the lambda
lengths. Then the signed volume of the tetrahedron determined by these
four points is given by

2
√

2 λ12λ23λ34λ14

(λ2
12 + λ2

23 − λ2
13

λ12λ23λ13
+

λ2
34 + λ2

14 − λ2
13

λ34λ14λ13

)
,

where the volume is positive if and only if the Euclidean segment con-
necting u1, u3 lies below the Euclidean segment connecting u2, u4.

Proof. As usual, we normalize by putting the points into standard po-
sition and rely on the basic calculation. Thus, we have the four points
in L+ given in the usual coordinates on R3 as:

ae

b
u =

1√
2

ae

b
(−1, 0, 1),

be

a
v =

1√
2

be

a
(1, 0, 1),

ab

e
w =

√
2
ab

e
(0,−1, 1),

ζ =
1√
2

(
(
d

ae
− c

be
)(ac+ bd),

2cd

e
, (
d

ae
+

c

be
)(ac+ bd) − 2cd

e

)
,
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and subtracting ab
e
w from the others, we therefore have the three cor-

responding Euclidean displacement vectors

1√
2

(
(bd− ac)(bd+ ac)

abe
,
2(ab+ cd)

e
,
(ac + bd)2

abe
− 2(ab+ cd)

e
),

1√
2

(−ae
b
,
2ab

e
,
ae

b
− 2ab

e
),

1√
2

(
be

a
,
2ab

e
,
be

a
− 2ab

e
).

Now take the triple scalar product of these three vectors in this order
and pull out the obvious common factors to get:

√
2

a2b2e3

∣∣∣∣∣∣

(bd− ac)(bd+ ac) ab(ab + cd) (ac+ bd)2 − 2ab(ab+ cd)
−ae2 ab2 ae2 − 2ab2

be2 a2b be2 − 2a2b

∣∣∣∣∣∣

Adding twice the second column plus the first column to the third
column, we find:

√
2

a2b2e3

∣∣∣∣∣∣

(bd− ac)(bd+ ac) ab(ab+ cd) 2bd(ac+ bd)
−ae2 ab2 0
be2 a2b 2be2

∣∣∣∣∣∣

=
2
√

2

abe3

∣∣∣∣∣∣

b2d2 − a2c2 ab+ cd bd(ac + bd)
−ae2 b 0
be2 a be2

∣∣∣∣∣∣
,

and now directly taking the determinant by expanding along the third
column gives

2
√

2

ae
[[ae2(ab+ cd) + b(b2d2 − a2c2) − a2d(ac+ bd) − b2d(ac+ bd)

]

=
2
√

2

e
[e2(ab+ cd) − bac2 − ad(ac + bd) − b2cd]

= 2
√

2 abcd
[a2 + b2 − e2

abe
+

c2 + d2 − e2

cde

]

as was claimed. �

It is worth emphasizing that the expression
λ2
12

+λ2
23
−λ2

13

λ12λ23λ13
that oc-

curs in our volume calculation in Corollary 4.10 had already arisen
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in Lemma 4.6 in our calculation of equidistant points, and it is further-
more worth emphasizing that this same expression

λ2
12 + λ2

23 − λ2
13

λ12λ23λ13

=
λ12

λ23λ13

+
λ23

λ12λ13

− λ13

λ12λ23

is actually linear in the h-lengths by Lemma 4.4. We are aware of no a

priori geometric or other reason for these “coincidences”, and we shall
exploit them in subsequent discussions.

One further point we wish to make is that there is actually another
simple expression for the volume:

Corollary 4.11. In the notation of Corollary 4.10, the signed volume
is also expressed as

2
√

2
[
λ24(λ12λ14 + λ23λ34) − λ13(λ12λ23 + λ14λ34)

]

Proof. This is an algebraic consequence of Corollaries 4.9a and 4.10
since

a2 + b2 − e2

abe
+
c2 + d2 − e2

cde

=
1

abcde

[
cd(a2 + b2 − e2) + ab(c2 + d2 − e2)

]

=
1

abcde

[
(ac + bd)(ad+ bc) − e2(ab+ cd)

]

=
1

abcde

[
ef(ad+ bc) − e2(ab+ cd)

]

=
1

abcd

[
f(ad+ bc) − e(ab+ cd)

]

in the usual notation of the basic calculation, where f = ac+bd
e

is the

lambda length of the horocycles corresponding to ζ and ab
e
w according

to Ptolemy’s equation. �

There is one more basic formula from [29] to give at this point,
which will not be required in the sequel and is included just because it
is perhaps interesting.

Lemma 4.12. For any q in Minkowski 3-space, the function

fq(p) =
< q − p, q >

1 + z
, where p = (x, y, z) ∈ H,
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satisfies the differential equation “of the conformal factor”:

f 2
q △ log fq = − < q, q > (1+ < q, q >),

where △ denotes the Laplacian.

Proof. Adopting the usual polar coordinates r exp iθ on D, the mapping
D → H takes the form

r exp iθ 7→ 1

1 − r2
(2rcos θ, 2rsin θ, 1 + r2)

in standard Euclidean coordinates on Minkowski space, so in the stan-
dard light-cone basis, the image p ∈ H is expressed as

1 + r2 + 2r(sin θ − cos θ)√
2(1 − r2)

u +
1 + r2 + 2r(sin θ + cos θ)√

2(1 − r2)
v

− 2rsin θ√
2(1 − r2)

w.

Setting q = αu+ βv + γw, we find that

fq(p) = r2
[
α+ β + 2γ + 2

√
2(αβ + αγ + βγ)

]
/2
√

2

+r
[
4γ sin θ + 2(α− β) cos θ

]
/2
√

2

+
[
α + β + 2γ − 2

√
2(αβ + αγ + βγ)

]
/2
√

2

= Ar2 +Br + C,

where A and C are independent of θ, so

∂2fq

∂r2
= 2A,

∂fq

∂r
= 2Ar +B,

∂2fq

∂θ2
= −Br,

and

∂fq

∂θ
= r[2γ cos θ + (β − α) sin θ]/

√
2.
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We finally calculate that

f 2
q △ log fq = [Ar2 +Br + C]

[
2A+

2Ar +B

r
− B

r

]

− [2Ar +B]2 − 1

2r
[2γ cos θ + (β − α) sin θ]

= 4A[Ar2 +Br + C] − [4A2r2 +B2 + 4ABr]

−
[
2γ2 cos2θ +

(β − α)2

2
sin2θ + 2γ(β − α) cos θ sin θ

]

= 4AC − 1

2
[(β − α)2 + 4γ2]

= −4(αβ + αγ + βγ)2 + 2(αβ + αγ + βγ)

= − < q, q > (1+ < q, q >)

as was claimed. �

Corollary 4.13. If q ∈ (H ∪ −H) ∪ (L+ ∪ −L+), then log fq(p) is a
harmonic function of p ∈ H. Thus if q1, q2 both lie in this subspace,
then

log
< q1 − p, q1 >

< q2 − p, q2 >

is harmonic in p, and in particular,

1

2
log

< p, q > −1

< p, q > +1

is Green’s function on H with pole q ∈ H.

5. Coordinates on decorated Teichmüller spaces

We shall give in this lecture based on [53, 55, 62] parametriza-
tions of several versions of decorated Teichmüller spaces, and we be-
gin with the basic version discussed in the first lecture for a surface
F = F s

g with s ≥ 1: A point of the Teichmüller space T (F ) is a
conjugacy class of discrete and faithful representations ρ : π1(F ) →
PSL2(R) of the fundamental group into the Möbius group so that
peripheral elements map to parabolics as we have discussed. The sub-
group Γ = ρ(π1(F )) < PSL2(R) acts by isometries on the hyperbolic
plane, say in the Poincaré disk model D, and there is thus an induced
hyperbolic structure on the surface F = D/Γ. Equivalently in the
Minkowski model, we identify Γ with a subgroup (of the same name)
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Γ < SO+(2, 1), and the hyperbolic structure on the surface is given by
F = H/Γ.

A point of the decorated Teichmüller space T̃ (F ) includes also the
further specification of a positive real number to each puncture, and
the geometric interpretation of these further parameters is as follows.
Supposing that x ∈ S1

∞ is the fixed point of some parabolic transfor-
mation in Γ acting on D, a horocycle in the hyperbolic plane centered
at x projects into the surface F = D/Γ to a closed curve in F , and we
refer to such a curve as a horocycle in F ; we say that the horocycle
is centered at the puncture of F corresponding to x. Since a horocy-
cle in F is closed, it has a well-defined finite hyperbolic length in the
hyperbolic structure on F , and it is this length that we shall identify
with the additional real parameter assigned to the corresponding punc-
ture of F . Let us emphasize that though a horocycle is necessarily a
closed curve, it is not necessarily a simple curve in F though a “short
enough” horocycle (depending upon the group Γ) is always a simple
curve separating the puncture from the rest of the surface:

Lemma 5.1. If a collection of distinct horocycles centered at punctures
of a hyperbolic surface each has hyperbolic length less than one, then
the horocycles are disjointly embedded.

Proof. Choose one of the punctures, and conjugate the corresponding
parabolic transformation to z 7→ z + 1 in the upper half-space model
U . Since the horocycle about the puncture has hyperbolic length less
than one, its lift with center ∞ lies at height greater than one. If the
corresponding horocycle in the surface were not embedded, then there
must be some other lift of it with real center which has Euclidean diam-
eter greater than one, and this is a contradiction. Likewise conjugating
the parabolic transformation corresponding to the longest horocycle,
we derive a similar contradiction. �

A decorated hyperbolic structure on F = F s
g is the specification of

a conjugacy class of group Γ as above together with the additional
data of an s-tuple of horocycles, one about each puncture, and taking
hyperbolic lengths of horocycles as coordinates on the fibers of T̃ (F ) →
T (F ), this gives a geometric interpretation to the points of T̃ (F ). As a
point of notation, we shall typically regard Γ ∈ T (F ) suppressing the
fact that Γ is only defined up to conjugacy, and we shall likewise let
Γ̃ ∈ T̃ (F ) denote the specification of underlying group Γ together with
a decoration.
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Given Γ̃ ∈ T (F ) and given and ideal arc, i.e., the homotopy class
of an embedded arc α connecting punctures in F , we may define the
associated lambda length λ(α; Γ̃) in the natural way as the lambda
length of any Γ-geodesic representative for α in the hyperbolic plane
with decoration induced from Γ̃. In other words, straighten α to a Γ-
geodesic in F , truncate using the horocycles from the decoration, let δ
denote the signed hyperbolic length of this truncated geodesic, and set
λ(α; Γ̃) =

√
exp δ. In still other words by Lemma 4.1, a lift of the Γ-

geodesic representative of α to H is asymptotic to a pair of rays in L+,
and there are unique points u, v in these rays corresponding via affine
duality in Lemma 2.6 to the decoration, and λ(α; Γ̃) =

√− < u, v >.
Define an ideal triangulation ∆ of F s

g to be (the homotopy class of)
a collection of disjointly embedded arcs connecting punctures so that
each complementary region is a triangle with its vertices among the
punctures. Examples of ideal triangulations are illustrated in Figure 10.
Euler characteristic considerations show that there are 6g − 6 + 3s
ideal arcs in an ideal triangulation of F s

g , and there are 4g − 4 + 2s
complementary triangles.

Figure 10 Examples of ideal triangulations.

Theorem 5.2. For any ideal triangulation ∆ of F s
g with s ≥ 1, the

natural mapping

Λ∆ : T̃ (F s
g ) → R∆

>0

Γ̃ 7→ (α 7→ λ(α; Γ̃))

is a real-analytic surjective homeomorphism.

Proof. We must produce the inverse to Λ∆ and so suppose there is a
positive real number assigned to each arc in ∆. Let F̃ → F denote the
topological universal cover of F = F s

g . The ideal triangulation ∆ lifts
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to a collection ∆̃ of arcs decomposing F̃ into triangular regions, and to
such each arc is associated the real number assigned to its projection.
We shall construct a corresponding collection of decorated geodesics in
D, or equivalently, a collection of pairs of points in L+.

Choose one of these topological triangles in F̃ , call it t0, and choose
an ideal triangle in D, say the triangle T0 spanned by ū, v̄, w̄, where
u, v, w is the standard light-cone basis for Minkowski space. The ori-
entation of F̃ induced from that on F gives a cyclic ordering to the
vertices of t0 which corresponds to a cyclic ordering of u, v, w as a pos-
itively oriented basis for Minkowski space. According to Corollary 4.3,
there are unique points in u, v, w realizing the numbers assigned to the
edges of t0 as corresponding lambda lengths. This describes a lift of
t0 ⊂ F̃ to the triangle T̃0 ⊂ D plus a lift of the ideal points of t0 to
a triple of points in L+ covering the vertices of T0, and this completes
the basis step of our inductive construction of the inverse to Λ∆.

For the inductive step, consider one of the three triangular regions t
adjacent to t0 in F̃ . The common edge t∩ t0 has already been lifted to
D and its vertices to L+ in the basis step. By Lemma 4.7, there is a
unique lift T of t to D and its vertices to L+ that agrees with the lift
of t0 so that the lift to D of the vertex of t disjoint from t0 is separated
from T0 by the lift of t ∩ t0 and the specified numbers on the edges of
t are realized as lambda lengths. We may likewise uniquely lift to D
and L+ the other two triangular regions of F̃ adjacent to t0.

Continue recursively in this way to define a mapping φ : F̃ → D to-
gether with lifts of the ideal points of τ = φ(∆̃) to L+. This mapping
φ is continuous and injective by construction (since we always choose
the point in Lemma 4.7 separated from what has previously been con-
structed), and we claim it is also surjective. To this end, suppose that
z ∈ D and consider the sequence of triangular regions t0, t1, . . . defined
recursively as follows: if z /∈ φ(tj), then there is a unique triangular
region ti+1 so that φ(ti+1) and z lie in the same component of D−φ(tj).
This sequence of triangles either terminates with z in the image of φ
as desired or else it continues indefinitely.

Passing from triangle tj to triangle ti+1 there are two cases depending
upon whether we turn left or right, and there are thus two basic cases
for our semi-infinite sequence: either there are infinitely many left and
infinitely many right turns in the sequence, or else the sequence ends
with an infinite sequence of consecutive left turns or ends with an
infinite sequence of consecutive right turns.

In the latter case for instance if the sequence ends with an infinite
sequence of common turns tk, tk+1, . . ., for some k ≥ 0, then all of the
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triangles φ(tk), φ(tk+1), . . . share a common ideal point. Now, there are
only finitely many arcs in ∆ and therefore only finitely many possible
lambda lengths, hence there are only finitely many possible h-lengths
of sectors of triangles complementary to τ by Lemma 4.4. In partic-
ular, these h-lengths are bounded below. Conjugating by the Cayley
transform and an appropriate Mobius transformation to guarantee that
the common ideal point of the triangles φ(tk), φ(tk+1), . . . is the point
at infinity in U , it follows that the sequence of common turns must
terminate, which is a contradiction.

In the former case, there are infinitely many pairs of consecutive
triangles tk, tk+1 so that the type, right or left, of the turn tk−1, tk is
different from the type of tk, tk+1. The pair of triangles φ(tk), φ(tk+1)
determines an ideal quadrilateral, and again since there are only finitely
many possible lambda lengths, there are bounds above and below on
the cross-ratio of this ideal quadrilateral by Corollary 4.9b. Since the
distance between opposite sides of an ideal quadrilateral of bounded
cross ratio is itself bounded below, it follow that there can be only
finitely many such pairs tk, tk+1, which is again a contradiction.

The mapping φ : F̃ → D is therefore a continuous bijection and
indeed a homeomorphism.

Let us now define a homomorphism ρ : π1(F ) → PSL2(R) which
leaves invariant the collection τ of geodesics. Choose any fundamental
domain D for the action of π1(F ) on F̃ which is a union of triangular

regions complementary to ∆̃. The action of π1(F ) identifies various
pairs of frontier edges of D, and we may consider such a pair of edges
e0 and e1 in the frontier of D, say with γ(e1) = e0 for γ ∈ π1(F ). There

is a unique triangle tj complementary to ∆̃ with ej in its frontier,
for j = 1, 2, so that t0 ⊂ D and t1 6⊂ D. There is then a unique
Möbius transformation ρ(γ) mapping φ(t1) to φ(t0) and mapping φ(e1)
to φ(e0) by Corollary 2.5. We may define ρ(γ) in this manner for
each such pairing γ ∈ π1(F ) of edges of D to define a homomorphism
ρ : π1(F ) → PSL2(R), where there are no relations to check since
π1(F ) is a free group for a punctured surface F .

It follows by induction that the representing group Γ = ρ(π1(F )) <
PSL2(R) leaves invariant the collection τ of geodesics by the unique-
ness statement in Lemma 4.7. Thus, the conjugacy class of represen-
tation ρ is independent of the choice of fundamental domain D, and
φ : F̃ → D is equivariant for the actions of π1(F ) on F̃ and Γ on D.
Furthermore, the representing group Γ is discrete since a sequence of
Möbius transformations accumulating at the identity could not leave



LAMBDA LENGTHS 43

invariant τ , the representation ρ is faithful since φ is injective, and ρ
maps peripherals to parabolics by construction.

Thus, Γ indeed determines an element of T (F ), and it remains only
to observe that the construction furthermore determines a Γ-invariant
collection of points in L+ lying over the parabolic fixed points of Γ in
S1
∞, which descends to a decoration on the hyperbolic surface.
This construction provides a two-sided inverse to the function Λ∆.

That Λ∆ and its inverse are real-analytic follows from the fact that
matrices in PSL2(R) representing covering transformations can be ex-
plicitly computed real analytically in terms of lambda lengths as was
described above in the construction of ρ from a choice of fundamental
domain. �

Several remarks are in order. One might think of the specification
of ideal triangulation ∆ of F as a kind of choice of “basis” for these
lambda length coordinates. It is also worth saying explicitly that the
basis step of this inductive proof, i.e., the choice of triangular region in
the universal cover and the choice of ideal triangle spanned by ū, v̄, w̄,
corresponds to normalizing to “kill” the quotient by conjugacy in the
definition of Teichmüller space.

We hope that the reader, much as the author, comes away from this
result with a firm understanding of what is Teichmüller space: fixing
a pattern of gluing triangles to get the specified topological surface
F , the Teichmüller space of F corresponds to all possible consistent
ways of gluing ideal triangles in the specified pattern. The consistency
conditions on the gluings arise from the requirement that the resulting
metric be complete and can be understood by considering the local pic-
ture of the glued triangles near a puncture. Namely, choose a point on
an oriented ideal arc incident on a puncture and traverse the horocycle
centered at the puncture passing through this chosen point in a given
triangle to determine a specified point on the next consecutive arc inci-
dent on this puncture; this point, in turn, determines another horocycle
in the next triangle and hence a specified point on the next consecu-
tive arc, and so on. After a finite number of such steps, we return to
the initial oriented ideal arc, and the point so determined may or may
not agree with the initial choice of point on this arc depending on the
nature of the gluings. One can see without difficulty that these points
agree if and only if the resulting metric is complete near the puncture.
Thus, the triangles cannot be glued together willy-nilly: there is one
consistency condition for each puncture imposed by completeness of
the resulting metric. It is worth emphasizing that a real convenience
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of decorated Teichmüller theory is that there are no such consistency
conditions on lambda lengths as we have just seen. We shall explicate
these conditions on (undecorated) Teichmüller space in Theorem 6.1.

Lemma 5.3. Lambda lengths are natural for the action of the mapping
class group, i.e., if φ ∈ MC(F s

g ), and φ∗(Γ̃) denotes the push-forward
of metric and decoration, then

λ(e; Γ̃) = λ(φ(e);φ∗(Γ̃)),

for any ideal arc e.

Proof. This follows directly from the definition of lambda lengths, which
are invariant under Möbius transformations. �

Corollary 5.4. Suppose that ∆ is an ideal triangulation of F s
g and Λ

is an assignment of lambda lengths to the ideal arcs in ∆. If a mapping
class on F s

g leaves ∆ invariant and preserves Λ, then this mapping class
is an isometry of the corresponding hyperbolic surface.

Proof. Manipulating the formula in the previous lemma for some map-
ping class φ, we have λ(e;φ∗(Γ̃)) = λ(φ−1(e); Γ̃). Thus, if φ preserves

∆ and respects lambda lengths, then the coordinates of φ∗(Γ̃) agree
with those of Γ̃, i.e., φ∗ acts by (decorated) hyperbolic isometry. �

As was mentioned already, the proof of Theorem 5.2 in particular
gives an effective algorithm for calculating “holonomies”, i.e., matrices
representing ρ(γ) for γ ∈ π1(F ), in terms of lambda lengths (see the
proof of Theorem 6.2 for an elegant algorithm to this end), and there is
the following special case of particular interest. Recall from Lemma 3.2
that the modular group PSL2(Z) leaves invariant the Farey tesselation,
so any subgroup of the modular group also leaves invariant the Farey
tesselation. In particular, if Γ < PSL2(Z) is a finite-index subgroup
without elliptic elements, then the Farey tesselation descends to an
ideal triangulation on the surface D/Γ, and from the very definition of
the Farey tesselation using horocycles, this surface admits a decoration
with all lambda lengths equal to one. Since a “punctured arithmetic
surface” corresponds precisely to a finite-index subgroup of the modular
group without elliptics, we have:
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Corollary 5.5. The collection of punctured arithmetic surfaces corre-
sponds to the set of all ideal triangulations with lambda lengths identi-
cally equal to one. Furthermore, the topological symmetry group of the
ideal triangulation is the hyperbolic isometry group of the corresponding
surface.

Consider an ideal arc e in an ideal triangulation ∆ of F , where we
assume that e separates two distinct ideal triangles of F −∪∆. In this
case, e is a one diagonal of an ideal quadrilateral complementary to
(F − ∪∆) ∪ e, and we may replace e by the other diagonal f of this
quadrilateral to produce another ideal triangulation ∆e = ∆∪{f}−{e}
of F as in Figure 11. We say that ∆e arises from ∆ by a flip along
e. By Ptolemy’s relation Lemma 4.9a, the lambda lengths are related
by ef = ac + bd, where a, c and b, d are the opposite sides of the
quadrilateral.

Figure 11 Flips on ideal traingulations.

Classical Fact [Whitehead] Finite sequences of flips act transitively
on ideal triangulations of a fixed surface.

See [14] for a proof of this. We shall give a different proof of this
fact in Lecture 13 as the first in a heirarchy of such results. Indeed, we
shall describe all relations among sequences of flips, relations among
relations, and so on.

Theorem 5.6. For any surface F = F s
g with s ≥ 1, the action of

MC(F ) on lambda lengths with respect to a fixed ideal triangulation
is described by permutation followed by finite compositions of Ptolemy
transformations.

Proof. As before, naturality of lambda lengths gives λ(e;φ∗(Γ̃)) =

λ(φ−1(e); Γ̃) for any φ ∈ PMC(F ), ideal arc e, and Γ̃ ∈ T̃ (F ). Given
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an ideal triangulation, we may thus consider the ideal triangulation
φ−1(∆) and simply pull-back the lambda length of e ∈ ∆ to φ−1(e)
to assign lambda lengths on the ideal arcs in φ−1(∆) which describe
φ∗(Γ̃). By the Classical Fact of Whitehead, there is a finite sequence
of flips beginning with φ−1(∆) and ending with ∆, and since the effect
of a flip on lambda lengths is given by a Ptolemy transformation by
Corollary 4.9a, the result follows. �

Fix some ideal triangulation ∆ of F = F s
g and define a two-form in

coordinates with respect to ∆ by

ω∆ =
∑

dlog a ∧ dlog b+ dlog b ∧ dlog c+ dlog c ∧ dlog a,

where the sum is over all triangles complementary to ∆ in F whose
edges have lambda lengths a, b, c in this clockwise cyclic ordering as
determined by the orientation of F .

Proposition 5.7. This two-form is well-defined independent of ideal
triangulation, i.e., if ∆,∆′ are two ideal triangulations of F = F s

g , then

ω∆ = ω∆′ as two-forms on T̃ (F ).

Proof. In light of Whitehead’s Classical Fact, it suffices to prove the
result in case ∆′ = ∆e, i.e., ∆,∆′ differ by a single flip along an ideal arc
e ∈ ∆. To this end, suppose that e separates distinct triangles in (F −
∪∆)∪ e with frontier edges a, b, e and c, d, e in these counter-clockwise
cyclic orders and let f denote the other diagonal of the quadrilateral
with frontier arcs a, b, c, d. Adopt the convenient notation that we
identify the lambda length of an arc with the arc itself as usual, and
set x̃ = dlog x = dx

x
for x = a, . . . , f , writing the wedge product simply

as a product. In particular, by the Ptolemy relation ef = ac + bd, we
have

ẽ+ f̃ =
1

ac + bd

[
ac(ã + c̃) + bd(b̃+ d̃)

]
.
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We may compute the relevant contribution to ω∆′ to be

f̃ c̃ + c̃b̃ + b̃f̃ + f̃ ã + ãd̃ + d̃f̃

= ãd̃ + c̃b̃ + f̃(ã + c̃ − b̃ − d̃)

= ãd̃ + c̃b̃ − ẽ(ã + c̃ − b̃ − d̃)

− ac

ac + bd
(ã + c̃)(b̃ + d̃) +

bd

ac+ bd
(b̃ + d̃)(ã + c̃)

= ãd̃ + c̃b̃− ẽ(ã + c̃ − b̃ − d̃) + (b̃ + d̃)(ã + c̃)

= ẽb̃ + b̃ã + ãẽ + ẽd̃ + d̃c̃ + c̃ẽ,

which thus agrees with the corresponding contribution to ω∆. �

In fact, this two-form is the pull-back to T̃ (F ) of half the “Weil-
Petersson Kähler two-form” on T (F ) (cf. Appendix A of [55]); it follows
from general facts that it is therefore invariant under MC(F ), but as
we have just seen, it enjoys the more general invariance under flips.
Since the Weil-Petersson two-form is non-degenerate on Teichmüller or
moduli space, it furthermore follows that the tangent vectors to the
fibers of the forgetful map T̃ (F ) → T (F ) span the vector subspace of

the tangent space to T̃ (F ) whose contractions with our pull-back two-
form vanish; in other words, scaling all of the lambda lengths meeting a
given puncture (where if an arc has both its endpoints at the puncture,
then we scale by the square) leaves invariant this two-form, and the
corresponding s-many vector fields span the degeneracies of the two-
form. A direct proof of this fact is described in Remark 6.8.

There are two other versions of the results of this lecture we wish to
describe, as follows.

Partially decorated surfaces Consider a surface F = F s
g with

s ≥ 1 as before, and choose among the punctures of F a distin-
guished non-empty set P . A partial decoration of F on P is the
specification of one horocycle centered at each puncture in P . De-
fine the P -decorated Teichmüller space T̃P (F ) to be the trivial bundle
over T (F ) where the fiber over a point is the space of all tuples of
horocycles, one horocycle centered at each puncture in P .

Bordered surfaces Consider a surface F = F s
g,r with boundary

components ∂1, . . . , ∂r, where r ≥ 1, and choose on each ∂j a non-
empty set Dj ⊂ ∂j of distinguished points. By way of notation, if
Dj consists of δj ≥ 1 points, for j = 1 . . . , r, then we define the
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vector ~δ = (δ1, . . . , δr) and let F s

g,~δ
denote a fixed smooth surface

F with this extra data. Let us remove from F the distinguished
points D = D1 ∪ · · · ∪Dr on the boundary and double the resulting
surface along its boundary arcs so that each point of D gives rise
to a puncture of the doubled surface F ′. A decoration on F s

g,~δ
is a

partial decoration of F ′ on the set P of punctures arising from the
distinguished points on the boundary of F . There is the natural
involution ι : F ′ → F ′ interchanging the two copies of F , and we
define the Teichmüller space T (F s

g,~δ
) of F s

g,~δ
to be the ι-invariant

subspace of T (F ′). The decorated Teichmüller space T̃ (F s

g,~δ
) of F s

g,~δ

is defined to be the ι-invariant subspace of T̃P (F ′), i.e., the trivial
bundle over T (F s

g,~δ
) where the fiber over a point is the space of all

tuples of horocycles, one horocycle about each puncture in P .

We begin with the former version and suppose that P is a non-
empty subset of the collection of punctures of F = F s

g . Define a quasi
triangulation based at P to be the homotopy class of a collection of
disjointly embedded ideal arcs so that each complementary region is
either a triangle or a once-punctured monogon with its vertices in P .
There are 6g−6+2s+#P ideal arcs in a quasi triangulation based at P ,
s−#P complementary once-punctured monogons, and 4g−4+s+#P
complementary triangles.

Figure 12 Quasi flips on quasi triangulations.

It is not true that flips act transitively on quasi triangulations of
a fixed surface, however, flips together with an additional combinato-
rial move do act transitively (cf. Lecture 13). The additional move
is called a quasi flip and is defined as follows: If an ideal arc a in a
quasi triangulation ∆ based at P decomposes a bordered subsurface
F 1

0,(2) into a triangle and a once-punctured monogon, then the quasi
flip along a removes and replaces a with the unique ideal arc b 6= a
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in F 1
0,(2) so that b also decomposes F 1

0,(2) into a triangle and a once-
punctured monogon as illustrated in Figure 12; again, we denote the
resulting quasi triangulation ∆a = ∆ ∪ {b} − {a}. It is a small exer-
cise using Ptolemy’s equation to verify that if F 1

0,(2) has boundary arcs

c, d, then ab = (c + d)2, and we shall refer to this as a quasi Ptolemy
transformation.

Given Γ̃ ∈ T̃P (F ) and any ideal arc e connecting points of P , there
is again a lambda length λ(e; Γ̃) defined as before, and we have the
following result summarizing the material of this section for partially
decorated surfaces:

Theorem 5.8. For any quasi triangulation ∆ of F s
g based at P , the

natural mapping

Λ∆ : T̃P (F s
g ) → R∆

>0

Γ̃ 7→ (e 7→ λ(e; Γ̃))

is a real-analytic surjective homeomorphism. Furthermore, the action
of PMC(F ) on lambda lengths with respect to a fixed quasi triangu-
lation is described by permutation followed by finite compositions of
Ptolemy transformations and quasi Ptolemy transformations. Finally,
the two-form ω∆ defined exactly as before, summing only over trian-
gles complementary to ∆ in F , is well-defined independent of the quasi
triangulation ∆.

Proof. We may extend the quasi triangulation to an ideal triangulation
by adding the unique ideal arc from undecorated puncture to decorated
puncture in each complementary once-punctured monogon, and we may
assign any lambda length to each of these added ideal arcs. Follow
through the proof of Theorem 5.2 verbatim and notice that by the last
sentence in Lemma 4.7, the resulting representation of the fundamental
group in the Möbius group is independent of the choices of lambda
lengths on the added ideal arcs. The proof that the action of PMC(F )
is as stated follows exactly as before (and note that we could actually
have taken instead the subgroup ofMC(F ) that fixed the distinguished
punctures P setwise). To see that the two-form is invariant, adopt
the notation in the definition of quasi Ptolemy transformation, where
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ab = (c+ d)2, and compute as in the proof of Proposition 5.7:

d̃c̃+ c̃(
c+ d

a
)∼ = d̃c̃− c̃ã− ãd̃+ 2(c̃− d̃)

cc̃+ dd̃

c+ d

= d̃c̃+ ãc̃+ d̃ã+ 2c̃d̃

= c̃d̃+ ãc̃+ d̃ã,

as desired. �

A case of particular interest, which we shall further discuss later (cf.
Theorem 6.1), is when P is a singleton, i.e., among the punctures, we
have chosen a distinguished one (so in particular for F 1

g , there is no
choice). In this case, let us note that changing the partial decoration
simply scales each lambda length by a common amount; indeed, moving
the horocycle a hyperbolic distance d changes the hyperbolic length
along geodesics by the amount 2d, and hence scales the lambda lengths
by an amount exp d. This gives:

Corollary 5.9. For any quasi triangulation ∆ of F s
g based at a single

puncture, projective classes of lambda lengths of ideal arcs in ∆ give a
real-analytic parametrization of Teichmüller space T (F s

g ), the action of
the mapping class group is given by permutation together with Ptolemy
and quasi Ptolemy transformations, and the two-form described before
is well-defined independent of quasi triangulation.

Let us turn finally to a bordered surface F = F s
g,(δ1,...,δr) with distin-

guished points D in its boundary, with double F ′ and with involution
ι : F ′ → F ′ defined as before. The arcs in the boundary of F con-
necting consecutive points of D give rise to a family of ideal arcs in
F ′ which we denote by B, where #B = #D = δ1 + · · · + δr, and the
distinguished points in the boundary of F give rise to a family P of
punctures of F ′.

A quasi triangulation ∆ of F is the restriction to F of any ι-invariant
quasi triangulation of F ′ based at P , so a quasi-triangulation of F
automatically contains B. There are thus 6g−6+3r+2s+2(δ1+· · ·+δr)
ideal arcs in a quasi triangulation of F . We may perform flips or
quasi flips on ideal arcs in ∆−B, and we may imagine performing the
corresponding ι-equivariant flips or quasi flips in F ′. Again, we shall
prove (cf. Lecture 13) that flips and quasi flips on ideal arcs in ∆ −B
act transitively on quasi triangulations of F and have:
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Theorem 5.10. For any quasi triangulation ∆ of F s

g,~δ
, the natural

mapping
Λ∆ : T̃ (F s

g,~δ
) → R∆

>0

Γ̃ 7→ (e 7→ λ(e; Γ̃))

is a real-analytic surjective homeomorphism. Furthermore, the action
of PMC(F ) on lambda lengths with respect to a fixed quasi triangu-
lation is described by permutation followed by finite compositions of
Ptolemy transformations and quasi Ptolemy transformations. Finally,
the two form ω∆ defined exactly as before, summing only over trian-
gles complementary to ∆ in F , is well-defined independent of the quasi
triangulation ∆.

Proof. In light of our definitions, this truly follows directly from The-
orem 5.8 and Whitehead’s Classical Fact. �

Each of these variants, partially decorated surfaces and bordered
surfaces, will find non-trivial applications in the sequel. Avoiding the
temptation to go overboard, let us simply observe that there is a still
more elaborate variant of the theory where one considers bordered sur-
faces together with a distinguished subset of the punctures and deco-
rates not only the distinguished points on the boundary but also these
distinguished punctures.

6. Coordinates on Teichmüller spaces

As an alternative to the parametrization of T (F s
g ) given by pro-

jectivized lambda lengths on a quasi triangulation based at a single
puncture given in Corollay 5.9, we shall in this lecture discuss using
instead cross ratios of adjacent pairs of triangles complementary to an
ideal triangulation. To this end, suppose that points ξj ∈ S1

∞, for
j = 1, 2, 3, 4, are the vertices at infinity in this counter-clockwise order
of an ideal quadrilateral in D, and triangulate this quadrilateral by the
diagonal connecting ξ1 to ξ3. We may conjugate by a conformal map
in the two distinct ways: 1) sending ξ1 7→ 0, ξ2 7→ 1, ξ3 7→ ∞, which
maps ξ4 to some negative real number −ζ1; and 2) sending ξ3 7→ 0,
ξ4 7→ 1, ξ1 7→ ∞, which maps ξ2 to some negative real number −ζ2.
It follows from Lemma 4.9c that Z = log ζ1 = log ζ2 is the signed
hyperbolic distance between the orthogonal projections of ξ2 and ξ4 to
the specified diagonal of the quadrilateral. Furthermore, choosing any
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decoration on the quadrilateral, say with points uj ∈ L+ covering ξj,
for j = 1, 2, 3, 4, Lemma 4.9b gives

Z =
1

2
log

< u2, u3 > < u1, u4 >

< u1, u2 > < u3, u4 >

= log
λ(h(u2), h(u3)) λ(h(u1), h(u4))

λ(h(u1), h(u2)) λ(h(u3), h(u4))
.

We shall call Z the shear coordinate associated to the triangulated
quadrilateral, and it is evidently independent of an ordering on the ver-
tices of the quadrilateral as well as independent of decoration though it
does depend upon a choice of diagonal triangulating the quadrilateral.
Likewise given a once-punctured monogon triangulated by an edge e
connecting the puncture to the distinguished point on the boundary,
consider the lifts of this region to the universal cover of the surface; the
edge e lifts to the diagonal of a quadrilateral, and the corresponding
shear coordinate is found to vanish again by Lemma 4.9b. Thus in
any case, to an arc e in an ideal triangulation ∆ of F s

g with specified
hyperbolic structure Γ ∈ T (F s

g ), there is an associated shear coordi-
nate Z∆(e; Γ), which vanishes if e does not separate distinct triangles
complementary to ∆.

Theorem 6.1. For any ideal triangulation ∆ of F s
g with s ≥ 1, the

natural mapping

T (F s
g ) → R∆

Γ 7→ (e 7→ Z∆(e; Γ))

is a real-analytic homeomorphism onto the linear subspace determined
by the following equations: for each puncture p of F s

g , we have
∑

Z∆(e; Γ) = 0,

where the sum is over all arcs e of ∆ which are asymptotic to p counted
with multiplicity, i.e., if e has both endpoints at p, then Z∆(e; Γ) occurs
twice in the sum.

Proof. The argument is entirely analogous to the proof of Theorem 5.2,
where we lift ∆ to an ideal triangulation of the topological universal
cover F̃ of F = F s

g , choose a triangular region complementary to ∆̃

in F̃ and an ideal triangle in D to begin the recursive construction of
the mapping φ : F̃ → D determined by the putative shear coordinates,
which are again invariant under Möbius transformations. The inductive
step of the recursion depends upon the fact that the cross ratio is a
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complete invariant of ordered four-tuples of points in S1
∞. This mapping

φ is again a continuous injection by construction. In the earlier proof
that φ was surjective, there were two cases for a semi-infinite sequence
of turns: either there were infinitely many left-followed-by-right and
right-followed-by-left turns or the sequence ended with a consecutive
semi-infinite sequence of left or right turns. The former case is again
impossible since there are only finitely many distinct shear coordinates.
To rule out the latter case, consider uniformizing in upper half-space
U so that the consecutive triangles all share the point ∞ at infinity as
a common vertex. Letting xj ∈ R, for j ≥ 0, denote the consecutive
further vertices of these triangles, we find that the sequential shear
coordinates are given by ±log

xj−xj−1

xj+1−xj
, so this sequence might indeed

be bounded above and below with the sequence xj accumulating to
some finite value. However, this expression for shear coordinates shows
that the constraint on these coordinates telescopes, and there is some
n ≥ 1 so that for each k ≥ 1, we have xkn+1 − xkn = x1 − x0. This
possibility is thus untenable, and the mapping φ : F̃ → D is again a
surjective homeomorphism. The induced tesselation of D is invariant
by a subgroup Γ < PSL2(R) defined in analogy to Theorem 5.2 again
using that the cross ratio is a complete invariant of ordered four-tuples
of points in S1

∞.
The necessity of the asserted constraints on shear coordinates can be

checked directly using the formula Lemma 4.9b relative to any decora-
tion on F . Alternatively, using the interpretation of shear coordinates
in Lemma 4.9c as distances between orthogonal projections likewise
establishes necessity of these constraints; this also proves sufficiency of
the constraints since peripheral elements represented in the constructed
group Γ only then preserve horocycles and hence are parabolic Möbius
transformations. �

Returning to the discussion following Theorem 5.2, we see that a
gluing of ideal triangles produces a complete hyperbolic structure on
the punctured surface precisely when the constraints of Theorem 6.1
hold. Again, it is worth emphasizing that passing from Teichmüller
space to decorated Teichmüller space, these constraints disappear, and
lambda lengths give global unconstrained coordinates.

Since the linear constraints on shear coordinates were used only to
guarantee that the constructed mapping φ : F̃ → D was surjective and
that peripheral elements were represented by parabolics, this suggests
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that removing these constraints may correspond to dropping this re-
striction on peripheral elements. Indeed this is the case as we next
discuss.

Fix some surface F = F s
g with s ≥ 1 and consider the space

Hom′′ = Hom′′(π1(F
s
g ), PSL2(R))/PSL2(R)

of conjugacy classes of discrete and faithful representations ρ of π1(F )
in PSL2(R) so that if γ ∈ π1(F ) is a peripheral element, then the
absolute value of the trace of ρ(γ) is at least two. A peripheral element
γ ∈ π1(F ) is therefore represented by either a parabolic or a hyperbolic
element. In this context, we shall refer to the punctures of F s

g as
“holes”, where a hole is a “ρ-puncture” if the trace has absolute value
two and is a “ρ-boundary” if the trace has absolute value greater than
two for ρ ∈ Hom′′, where these attributes are actually associated with
holes rather than just peripheral elements by invariance of trace under
conjugacy.

We define a 2s-fold branched cover

Π : T̂ (F ) → Hom′′,

where the fiber over a point of Hom′′ is the collection of all tuples
of orientations on the components of the ρ-boundary. In particular,
T (F s

g ) is identified with a subspace of T̂ (F ), and if r1 + s1 = s, then

there are 2r1 canonical embeddings of T (F s1

g,r1
) into T̂ (F ) corresponding

to the possible orientations.
In order to associate a shear coordinate to a point Γ̂ ∈ T̂ (F ) and an

arc e in F connecting holes, we may remove a small neighborhood of
the holes of F that are Π(Γ̂)-boundary components in order to consider
e as an arc in a surface with punctures and boundary. Associated
with the point Γ̂, there is furthermore an orientation associated with
each Π(Γ̂)-boundary component, and we may “spin” e around each
boundary component in the sense determined by its orientation. More
precisely, each geodesic boundary component of the surface D/Π(Γ̂)
lifts to a geodesic in D that lies in the frontier of the universal cover
F̃ ⊂ D, and we may define a lift of e to F̃ by sliding its endpoint
along this geodesic to infinity in the sense determined by the specified
orientation, finally straightening to a geodesic for Π(Γ̂). Thus, the

specification of Γ̂ ∈ T̂ (F ) and an ideal triangulation ∆ of F s
g gives a

well-defined collection of arcs indexed by ∆ decomposing F into ideal
triangles, and each such arc e ∈ ∆ has a well-defined shear coordinate
Z∆(e; Γ̂) defined as before.
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Theorem 6.2. [Thurston-Fock] For any ideal triangulation ∆ of the
surface F = F s

g with s ≥ 1, the natural mapping

T̂ (F ) → R∆

Γ̂ 7→ (e 7→ Z∆(e; Γ̂))

is a real-analytic homeomorphism onto. Furthermore, the hyperbolic
length of a ρ-boundary component is given by the absolute value of the
sum of incident shear coordinates counted with multiplicity.

13a Fatgraph from triangulation. 13b Freeway from fatgraph.

Figure 13 Fatgraphs and freeways.

Before giving the proof, we must first prepare some background com-
binatorial topology from [54], and in fact, it is convenient to use a com-
binatorial formalism different from ideal triangulations in the current
discussion. Namely, we shall describe “cubic fatgraph spines” in a sur-
face F = F s

g , which are defined as follows. Suppose that ∆ is an ideal
triangulation of F . Construct the “Poincaré dual” G = G(∆) of ∆ in
F by which we mean: there is one vertex of G for each region comple-
mentary to ∆, and for each arc of ∆ separating two (not necessarily
distinct) triangles, there is a “dual” edge of G connecting the corre-
sponding vertices; see Figure 13a. Thus, each vertex of G has valence
three, and we say simply that G is “cubic”. The graph G is a “spine”
of F in the sense that there is a strong deformation retraction of F
onto G, and furthermore, G comes equipped with an additional struc-
ture, namely, the orientation of F induces a clockwise ordering on the
arcs in the frontier of a complementary region to ∆, and hence there
is a corresponding cyclic ordering on the dual half-edges of G about
each vertex. This latter structure of such a cyclic ordering about each
vertex is called a “fattening” on the graph G, and a graph with this
extra structure is called a “fatgraph”.

Notice that an arc e in ∆ separates distinct triangles if and only if
its dual edge in G has distinct endpoints. In this case, the flip ∆ → ∆e

is defined, and the dual fatgraphs G(∆) and G(∆e) are related by a
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Whitehead move, i.e., collapsing and expanding the edge of G(∆) dual
to e in the natural way as in Figure 14 produces the fatgraph G(∆e).
We shall more generally and systematically study fatgraphs later (in
Lecture 11).

Figure 14 Whitehead moves on fatgraphs.

Following [52], we furthermore modify the cubic fatgraph G = G(∆)
to produce the corresponding “freeway” G′ by replacing each vertex
of G by a corresponding triangular region in G′ as illustrated in Fig-
ure 13b. We shall refer to a frontier edge of the added triangular regions
as “short” edges of G′ and to the other edges, which are in one-to-one
correspondence with the edges of G itself, as the “long” edges of G′.
An orientation of a short edge either “turns right”, i.e., agrees with the
counter-clockwise orientation on the boundary of a small triangular re-
gion, or it “turns left”, i.e., disagrees with this orientation, as is also
illustrated in Figure 13b.

Proof. We must again provide an inverse to the mapping defined by
taking shear coordinates and shall accomplish this by directly con-
structing a corresponding class of representations in Hom′′ from the
putative coordinates.

As in the earlier discussion, suppose that Z is the shear coordinate
of the triangulated quadrilateral in D with ideal vertices corresponding
to 0, 1,∞ and −eZ triangulated by the geodesic connecting 0 to ∞.
Consider the Möbius transformation

XZ =
( 0 −eZ

2

e−
Z
2 0

)
.
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One sees directly that XZ interchanges 0 with ∞ and 1 with −eZ ,
and indeed X2

Z = 1 ∈ PSL2(R); thus, XZ describes the unique ellip-
tic Möbius transformation fixing the geodesic asymptotic to 0,∞ and
mapping 1 7→ −eZ , which also happens to map −eZ 7→ 1 and hence is
an involution. There are two further elliptic Möbius transformations
of immediate interest, namely,

R =
( 1 1
−1 0

)
and L =

( 0 1
−1 −1

)
,

and again one sees directly that R maps 0 7→ ∞ 7→ −1 7→ 0, L maps
0 7→ −1 7→ ∞ 7→ 0, so each ofR,L are order three elements of PSL2(Z)
with L = R−1.

We next directly define a representation ρ : π1(F ) → PSL2(R) given
putative shear coordinates on the ideal triangulation ∆. We may regard
the shear coordinates as associated to the long edges of the freeway G′

derived from the cubic fatgraph G = G(∆) dual to ∆, and we choose as
basepoint for the fundamental group of F a vertex ∗ of G′. Since G is a
spine of F , any closed curve γ in F based at ∗ is homotopic to a closed
edge-path in G′ starting at ∗. Such an edge-path is uniquely described
by a corresponding sequence e1, . . . , en+1 of consecutive oriented edges
of G′, and we define

ρ(γ) = M(en+1) · · ·M(e1) ∈ PSL2(R),

where

M(e) =





XZ , if e is long and has shear coordinate Z;

R, if e is short and turns right;

L, if e is short and turns left.

Insofar as R3 = L3 = RL−1 = X2
Z = 1 ∈ PSL2(R), it follows that

ρ is well-defined and indeed a representation of π1(F ). We must prove
that ρ is discrete, faithful, determines orientations on the ρ-boundary
components, and realizes the putative shear coordinates.

To these ends, consider a hole of F so that the sum of coordinates
on incident edges is non-zero, where the coordinates are counted with
multiplicity as before, and remove a topological open disk neighbor-
hood to produce a corresponding boundary component. Performing
this modification for each such puncture of F , we produce a surface
F ′ with boundary. Restrict the ideal triangulation ∆ of F to a col-
lection of arcs in F ′, and spin these arcs around each such boundary
component, spinning to the left if the sum of coordinates is negative
and to the right if the sum of coordinates is positive. This produces
a finite family ∆′ of arcs decomposing F ′ into triangular regions and
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determines an orientation on each boundary component of F ′, where
the orientation agrees with the direction of this spinning.

As in the proof of Theorem 5.2, consider the topological universal
cover F̃ ′ of F ′ and the lift ∆̃′ of ∆′ to F̃ ′. We may choose a triangular
region complementary to ∆̃′ in F̃ ′ and an ideal triangle in D to begin
the recursive construction of the mapping φ : F̃ ′ → D determined by
the putative shear coordinates as before. Again by construction, φ is
a continuous injection which conjugates the action of γ ∈ π1(F ) on F̃
to the action of ρ(γ) on φ(F̃ ′), and furthermore, ρ(π1(F )) < PSL2(R)

leaves invariant the collection φ(∆̃′) of geodesics in D.
We claim that each boundary component of F ′ is a ρ-boundary. To

see this for a fixed such boundary component, we may change base
point and conjugate by a Möbius transformation so that the first edge
of the corresponding edge-path is a small edge of the freeway lying in
the triangle chosen in F̃ ′ to begin the recursive construction of φ. As
in the proof of Theorem 6.1, we may uniformize in upper half-space
U so that the geodesic connecting x0 = 0 to ∞ lies in the frontier of
the ideal triangle chosen in D to begin the recursive construction of
φ. There are two cases depending upon the orientation on the fixed
boundary component. Suppose first that the arcs in ∆′ twist to the
left along this boundary component of F ′, so the consecutive lifts to
U of these arcs have ideal points ∞ and x0 < x1 < x2 < · · · . Let Zj

denote the shear coordinate of the arc connecting ∞ to xj , so we have

as before that Zj = log
xj−xj−1

xj+1−xj
for j ≥ 1. Let n denote the number of

arcs spinning around this hole again counted with multiplicity, so that
for all k ≥ 0, we have Zkn+j = Zj . It follows from a geometric sequence
that xj converges to x∞ = xn(1 − e−z)−1 as j tends to infinity, where
z =

∑n

j=1Zj and z < 0 by our construction. Furthermore on the based
curve going once around this hole in its specified orientation, ρ takes
value

(XZn
L) · · · (XZ1

L) =
( eZn

2 e
Zn
2

0 e−
Zn
2

)
· · ·

( eZ1
2 e

Z1
2

0 e−
Z1
2

)

=
( e z

2 −2x∞sinh z
2

0 e−
z
2

)
,

where the final off-diagonal entry follows from the fact that x∞ is in-
variant under this Möbius transformation as the limit of the invariant
sequence x1, x2, . . ..

The argument for the case that the arcs twist to the right is entirely
analogous except that

∑n

j=1Zj > 0 and we replace the matrix L by R
in the earlier calculation. This completes the proof that each boundary
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component of F ′ is in fact a ρ-boundary, and indeed, that the ρ-length
of this boundary component is given by |∑n

j=1Zj| in either case since
the absolute value of the trace of a Möbius transformation is twice
the hyperbolic cosine of half its translation length along the invariant
geodesic.

It remains only to prove that the group Γ = ρ(π1(F )) is discrete.
To see this, we may choose a connected fundamental domain for Γ
consisting of a finite collection of ideal triangles since φ(∆′) is invariant
under Γ by construction. It follows that each element of Γ must map
each such ideal triangle to a disjoint ideal triangle, and discreteness
follows. �

It is worth remarking explicitly that the previous proof gives an el-
egant description of the holonomy ρ(γ) for each γ ∈ π1(F ) in terms
of the representing edge-path on any corresponding freeway. Indeed,
though Theorem 6.2 was well-known among the Thurston school in the
1980’s, cf. [67], this aspect of the proof we have presented was Fock’s
more recent innovation [15], and it is the basis for the quantization

[13, 35] of T̂ (F ), where the shear coordinates are replaced by appro-
priate operators on a Hilbert space. The action of flips on shear coor-
dinates is calculated using lambda lengths in Theorem 6.3. The other
key ingredient for quantization beyond the combinatorial description
of the mapping class group given in Lecture 13 is the Poission struc-
ture on T̂ (F ) (i.e., a skew-symmetric pairing on smooth functions on

T̂ (F ) that satisfies the Jacobi and Leibnitz identities) corresponding
to the Weil-Petersson Kähler two-form described in Proposition 5.7,
and this Poisson structure is described in Theorem 6.5 and its center
in Theorem 6.7.

Theorem 6.3. Suppose that ∆ is an ideal triangulation of F and Γ̂ ∈
T̂ (F ). Suppose that e ∈ ∆ separates two triangles complementary to ∆,
where these two triangles have frontier arcs a, b, e ∈ ∆ and c, d, e ∈ ∆
in these correct clockwise orders. Perform a flip on e to produce the
ideal triangulation ∆′ = ∆e, let e′ denote the unique arc in ∆′−∆, set
X = Z∆(x; Γ̂) and X ′ = Z∆′(x; Γ̂), for x = a, · · · , d, set E = Z∆(e; Γ̂),

E ′ = Z∆′(e′; Γ̂), and define Φ(X) = log(1 + eX). Provided a, b, c, d are
all distinct, then E ′ = −E and

A′ = A+ Φ(E), B′ = B − Φ(−E),

C ′ = C + Φ(E), D′ = D − Φ(−E).
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In the following special cases, these formulas are to be modified as fol-
lows:

a = c ⇒ A′ = A+ 2Φ(E); b = d ⇒ B′ = B − 2Φ(−E);

a ∈ {b, d} ⇒ A′ = A+ E; c ∈ {b, d} ⇒ C ′ = C + E.

Proof. Begin with the case that a, b, c, d are all distinct and adopt the
notation that arcs bounding a triangle together with x other than a, b, e
and c, d, e are x1, x2, x in this clockwise cyclic order, for x = a, b, c, d.
It is easiest to simply calculate in lambda lengths for some fixed deco-
ration, where we identify an arc with its lambda length for simplicity.
Thus, E = log ac

bd
,

A = log
a1b

a2e
, B = log

b1e

b2a
,

C = log
c1d

c2e
, D = log

d1e

d2c
,

so E ′ = log bd
ac

= −E, and

A′ = log
a1e

′

a2d
= log

a1b

a2e

ac + bd

bd
= A+ log (1 +

ac

bd
),

B′ = log
b1c

b2e′
= log

b1e

b2a

ac

ac+ bd
= B − log (1 +

bd

ac
),

C ′ = log
c1e

′

c2b
= log

c1d

c2e

ac + bd

bd
= C + log (1 +

ac

bd
),

D′ = log
d1a

d2e′
= log

d1e

d2c

ac

ac + bd
= D − log (1 +

bd

ac
),

using Ptolemy’s equation ee′ = ac+ bd, as was claimed.
In the special cases, we likewise compute:

a = c ⇒ A′ = log
e′2

bd
= log

bd

e2
(
ac+ bd

bd
)2 = A+ 2Φ(E);

b = d ⇒ B′ = log
ac

e′2
= log

e2

ac
(

ac

ac+ bd
)2 = B − 2Φ(−E);

a = b ⇒ A′ = log
c

d
= log

b

a

ac

bd
= A+ E;

a = d ⇒ A′ = log
a

d
= log

b

c

ac

bd
= A+ E;

c = b ⇒ C ′ = log
c

b
= log

d

a

ac

bd
= C + E;

c = d ⇒ C ′ = log
a

b
= log

d

c

ac

bd
= C + E;
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�

Corollary 6.4. In the notation of Theorem 6.3, consider the sub-
surface F̄ of F comprised of the two triangles with frontier edges a, b, e
and c, d, e. Let α be the boundary of a regular neighborhood in F̄ of one
of the vertices of these triangles. Then the sum of shear coordinates
of arcs in ∆ meeting α agrees with the sum of the shear coordinates
of arcs in ∆′ meeting α counted with multiplicity, i.e., if an arc in ∆
or ∆′ meets α twice, then its shear coordinate contributes twice to the
sum.

Proof. In particular, if a, b, c, d are all distinct, then F̄ is a quadrilateral
embedded in F , the assertion is that

A′ +D′ = A +D + E, A′ +B′ + E ′ = A +B,

B′ + C ′ = B + C + E, C ′ +D′ + E ′ = C +D,

and these relations follow from the formulas in Theorem 6.3 using the
identity

Φ(E) − Φ(−E) = log
1 + eE

1 + e−E
= log eE = E.

In the special cases, we likewise compute from Theorem 6.3:

if a = c (and similarly if b = d), then

C ′ + 2D′ + E ′ = C + 2D + E, A′ + 2B′ + E ′ = A + 2B + E;

if a = b (and similarly if c = d), then

A′ = A+E, A′ +C ′ +D′ = A+C +D + 2E, C ′ +D′ +E ′ = C +D;

if a = d (and similarly if b = c), then

A′ = A+E, A′ +B′ + C ′ + 2E ′ = A+B + C, B′ + C ′ = B + C +E;

if a = c and b = d, then

A′ +B′ + E ′ = A+B + E;

if a = d and b = c (and similarly if a = b and c = d), then

A′ = A + E, B′ = B + E, A′ +B′ + 2E ′ = A+B.

�

Suppose that ∆ is an ideal triangulation of F = F s
g , for s ≥ 1, with

dual cubic fatgraph spine G. If a, b ∈ ∆ are distinct, then let ǫab be
the number of components of F − (∪∆ ∪ G) whose frontier contains
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points of a and points of b counted with a sign that is positive if a and
b are consecutive in the clockwise order (arising from the orientation
of F ) in the corresponding region and with a negative sign if a and b
are consecutive in the counter-clockwise order. Setting ǫaa = 0 for each
a ∈ ∆, ǫab takes the possible values 0,±1,±2 and comprise the entries
of a skew-symmetric matrix indexed by ∆. For any a ∈ ∆, regard
the corresponding shear coordinate Za = Z∆(a; Γ̂) as a real-valued

coordinate function defined on T̂ (F ), and define a Poisson structure

by setting {Za, Zb}∆ = ǫab, the constant function on T̂ (F ) with value
ǫab, where we extend linearly using the Leibnitz rule to an appropriate
class of functions in the shear coordinates on T̂ (F ).

The Poission bracket {·, ·} of two functions depends only upon their
differentials, so there is a corresponding skew-symmetric two-tensor η
called the “Poisson bivector” so that for any two functions f, g, we
have < df ⊗ dg, η >= {f, g}, where < ·, · > is induced by the pairing
between cotangent and tangent vectors. From the definition of our
Poisson structure on T̂ (F ), the corresponding Poisson bivector is given
by

η∆ =
∑ ∂

∂Za

∧ ∂

∂Zb

+
∂

∂Zb

∧ ∂

∂Zc

+
∂

∂Zc

∧ ∂

∂Za

,

where the sum is over all triangles complementary to ∆ in F whose
edges in this clockwise cyclic ordering as determined by the orientation
of F have shear coordinates Za, Zb, Zc, and this evidently restricts to
the Poisson structure induced on T (F s

g ) ⊂ T̂ (F ) by the symplectic two-
form ω∆ described in Proposition 5.7 (using also the remarks about
degeneracies of this two-form following the same result).

Theorem 6.5. The Poisson structure {·, ·}∆ on T̂ (F ) is well-defined
independent of the choice of ideal triangulation ∆ of F = F s

g .

Proof. By Whitehead’s Classical Fact from the previous lecture that
flips act transitively on ideal triangulations, it suffices to show that
if one ideal triangulation arises from another by a single flip, then
the Poission structures for these two ideal triangulations coincide. In
the notation of Theorem 6.3, suppose first that the arcs a, b, c, d are
all distinct. We may compute with the bivector and set ∂X = ∂

∂X

for X = A,B,C,D,E and ∂′X = ∂
∂X′

, for X = A′, B′, C ′, D′, E ′, so
∂X = ∂′X for X = A,B,C,D, and

∂E =
eE

1 + eE

(
∂′A + ∂′C

)
+

e−E

1 + e−E

(
∂′B + ∂′D

)
− ∂′E
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by Theorem 6.3. The relevant contribution to η∆ is thus given by

∂A ∧ ∂B + ∂B ∧ ∂E + ∂E ∧ ∂A + ∂C ∧ ∂D + ∂D ∧ ∂E + ∂E ∧ ∂C

= ∂′A ∧ ∂′B + ∂′C ∧ ∂′D
+ (∂′B + ∂′D − ∂′A − ∂′C)

∧
[ eE

1 + eE
(∂′A + ∂′C) +

e−E

1 + e−E
(∂′B + ∂′D) − ∂′E

]

= ∂′A ∧ ∂′B + ∂′C ∧ ∂′D
+ ∂′E ∧ (∂′B + ∂′D − ∂′A − ∂′C) + (∂′B + ∂′D) ∧ (∂′A + ∂′C)

= ∂′A ∧ ∂′D + ∂′D ∧ ∂′E + ∂′E ∧ ∂′A + ∂′C ∧ ∂′B + ∂′B ∧ ∂′E + ∂′E ∧ ∂′C ,
giving the relevant contribution to the bivector η∆′, as required, where

we have used the identity eE

1+eE + e−E

1+e−E = 1 in the second equality.
In the special cases, we always have ∂′X = ∂X for X = A,B,C,D,

and in the various cases, the calculation is performed analogously with:

if a = c (and similarly if b = d), then

∂′E + ∂E =
2eE

1 + eE
∂A +

e−E

1 + e−E
(∂B + ∂D);

if a = b (and similarly if c = d), then

∂′E + ∂E = ∂A +
eE

1 + eE
∂C +

e−E

1 + e−E
∂D;

if a = d (and similarly if b = c), then

∂′E + ∂E = ∂A +
e−E

1 + e−E
∂B +

eE

1 + eE
∂C ;

if a = c and b = d, then

∂′E + ∂E =
2eE

1 + eE
∂A +

2e−E

1 + e−E
∂B;

if a = b and c = d (and similarly if a = d and b = c), then

∂′E + ∂E = ∂A + ∂C .

�

Example 6.6. For the surface F 1
1 , there is only one combinatorial type

of ideal triangulation, as illustrated in Figure 10. Letting A,B,C de-
note the three shear coordinates, we have {A,B} = {B,C} = {C,A} =



64 R. C. PENNER

2, and the matrix of Poisson brackets is given by

( 0 2 −2
−2 0 2

2 −2 0

)
.

The center of the Poisson algebra is generated by the kernel of this
matrix spanned by 2(A+B + C) corresponding to the unique hole.

Theorem 6.7. Fix an ideal triangulation ∆ of F = F s
g and index the

holes of F by p = 1, . . . , s. Consider the sum Cp of the shear coordinates
of the arcs in ∆ incident on the hole p counted with multiplicity as
before. Then the center of the Poisson algebra is freely generated by
{Cp : p = 1, . . . , s}.

Proof. We begin by proving that each Cp is indeed central and suppose

that e is an arbitrary arc in ∆ with E = Z∆(e; Γ̂). There are two cases
depending upon whether e triangulates a once-punctured monogon or
a quadrilateral complementary to ∆ − {e}, and in the former case, let
f ∈ ∆ denote the frontier of this once-punctured monogon and set
F = Z∆(f ; Γ̂). It may be that the hole p corresponds to the puncture
in this monogon, in which case Cp = E, so of course {E,Cp} = 0 by
skew-symmetry. If p corresponds to another hole of F , then we may
write Cp = C + δF , where δ = 0, 1 and {E, C} = 0. Since {E,F} = 0
by definition of the bracket, we conclude that {E,Cp} = 0 as required.

In the latter case, let us adopt the notation of Theorem 6.3 for the
nearby edges x = a, b, c, d and shear coordinates X = Z∆(x; Γ̂), and
suppose first that a, b, c, d are all distinct. Any element Cp is of the form

Cp = C+
∑4

j=1 δjDj, where D1 = A+B, D2 = C+D, D3 = A+D+E,

D4 = B+C +E, {E, C} = 0, and each δj = 0, 1. One checks using the
definition of the bracket that {E,Dj} = 0, for j = 1, 2, 3, 4, so indeed
{E,Cp} = 0 in this case.

There are again special cases if a, b, c, d are not distinct, which we
may summarize as follows:

if a = c (and similarly if b = d), then

Cp = C + δ1(A + 2B + E) + δ2(A + 2D + E);

if a = b (and similarly if c = d), then

Cp = C + δ1A+ δ2(C +D) + δ3(A+ C +D + 2E);

if a = d (and similarly if b = c), then

Cp = C + δ1(A+ E) + δ2(A+B + C) + δ3(B + C + E);
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if a = c and b = d, then

Cp = 2(A+B + E);

if a = b and c = d, then

Cp = A,C, or A+ C + 2E

if a = d and b = c, then

Cp = A+B,A+ E, or B + E,

where {E, C} = 0, the δ’s are equal to zero or one, and in each case
the bracket of E with each possible term again vanishes by definition.

Thus, the asserted elements are indeed central. According to Corol-
lary 6.4, these elements are furthermore invariant under flips, and by
Theorem 6.5, the center of the Poisson algebra is likewise invariant
under flips. Using the Classical Fact from the previous lecture that
flips act transitively on ideal triangulations (cf. Lecture 13), we may
thus prove the current result for any particularly convenient ideal tri-
angulation, and it then follows for any ideal triangulation. We shall
assume that 2g + 2s > 5 since the unique surface F 1

1 of negative Euler
characteristic ruled out by this inequality has already been handled
separately in Example 6.6.

15a Increase genus 15b Add a puncture

Figure 15 Building blocks for convenient fatgraph.

We may equivalently describe the dual fatgraph to this convenient
ideal triangulation, and it is comprised of various “building blocks” of
the two types depicted in Figure 15 joined together in a line (where the
cyclic ordering in the fatgraph structure is inherited from the plane of
projection of our figure); for the surface F s

g , there are g copies of the
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building block in Figure 15a and s− 1 copies of the building block in
Figure 15b. It is clear that the s elements Cp for this ideal triangulation
are linearly independent, and we have already shown that they are
indeed central. We complete the proof by calculating that the center
of the Poisson algebra for the ideal triangulation dual to this cubic
fatgraph has rank s.

Adopting notation for the shear coordinates A,B,C,D,E in Figure
15a, we have the corresponding matrix of Poisson brackets between
these variables given by

Aj Bj Cj Dj Ej

Aj 0 1 −1 0 0
Bj −1 0 1 1 −1
Cj 1 −1 0 1 −1
Dj 0 −1 −1 0 2
Ej 0 1 1 −2 0

.

Add the last row to the next-to-the-last row, add the last column to
the next-to-the-last column, add the third row to the second row, and
finally add the third column to the second column to obtain




0 0 −1 0 0
0 0 1 0 −2
1 −1 0 0 −1
0 0 0 0 2
0 2 1 −2 0



,

which evidently has rank four and can be further reduced (without
adding the first column or row to any other) to yield




0 0 0 0 0
0 0 +1 0 0
0 −1 0 0 0
0 0 0 0 +2
0 0 0 −2 0



.

We may thus erase from the matrix of Poisson brackets of all edges
those columns and rows corresponding to the variables Bj , Cj, Dj, and
Ej without changing the rank of this matrix.

Likewise, adding a building block as in Figure 15b creates exactly
one degeneracy since the variable Nj Poisson commutes with all other
variables as we have already shown.

It remains only to calculate the rank of the matrix corresponding to a
graph with edges Xj and Aj remaining after erasing all B-, C-, D-, E-,
and N -variable rows and columns. The corresponding Poisson bracket
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matrix has odd dimension 2g+2s−5 > 0 and the block-diagonal form

0 1 −1 0 0 · · ·
−1 0 1 0 0

1 −1 0 1 −1
0 −1 0 1 0 0
0 1 −1 0 1 −1

0 −1 0 1

0 1 −1 0
. . .

. . .
. . .

.

Add each even-index row to its predecessor and add each even-index
column to its predecessor to produce a matrix whose only nonzero
elements are +1 on the main super-diagonal and -1 on the main sub-
diagonal. This matrix has rank 2g+2s−6, which completes the proof.

�

Remark 6.8. The exactly parallel discussion and identical calculations
show that tangent vectors to Teichmüller space which contract to zero
with the invariant two-form discussed in the previous section are tan-
gent to the fibers of the projection to Teichmüller space as was discussed
before, and in particular, these vector fields are linearly independent.
The same remark applies in the setting of partially decorated or bor-
dered surfaces. For a bordered surface F = F s

g,(δ1,...,δr), however, there
is a further variant which is sometimes studied as follows. An ideal
triangulation ∆ of F in particular contains the arcs B lying in the
boundary of F , and we may consider the two-form defined in analogy
to the previous section, summing over triangles complementary to ∆
in F as before, but including only summands dlog x∧dlogy for pairs of
arcs lying in ∆ − B, where we have as usual identified an arc with its
lambda length for convenience; put another way, we may consider the
lambda lengths on the arcs in B as fixed a priori and pull-back the two-
form considered before. In this case, the degeneracies of this modified
two-form are spanned by the following vectors. For each j = 1, . . . , r
with δj even, enumerate in their correct cyclic order induced from the
orientation on the boundary the distinguished points p1, . . . , pδj

occur-
ring on the jth boundary component. Enumerate the arcs of ∆ − B
incident on pk by ak

ℓ , for k = 1, . . . , δj and ℓ = 1, . . . , Lk, and form

the sums λk =
∑Lk

ℓ=1
∂

∂log ak
ℓ

, where again this sum is taken with multi-

plicity (so if ak
ℓ is asymptotic to pk in both directions, then there are

two contributions to the sum). Finally forming the alternating sum
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Λj = λ1 − λ2 + · · · − λδj
for δj even, the degeneracies of the modified

two-form are freely spanned by {Λj : δj is even}. The proof is again
exactly parallel to the proof of Theorem 6.7, now using also that an
even-dimensional matrix whose non-zero entries are +1 on the main
super-diagonal and -1 on the main sub-diagonal is non-singular.

7. Circle homeomorphisms

Perhaps surprisingly but as we shall see in the next two lectures, the
previous considerations have applications to circle homeomorphisms
and harmonic analysis. This lecture is principally based on [56].

A tesselation τ of D is a countable collection of geodesics decompos-
ing D into ideal triangles, where τ is required also to be locally finite,
i.e., any point of D admits a neighborhood meeting only finitely many
geodesics in τ . We shall let τ 0 ⊂ S1

∞ denote the collection of ideal
points of all the geodesics in τ . The requirement that complementary
regions to ∪τ are ideal triangles implies that τ 0 is dense in S1

∞. (Note
that τ is not locally finite in the closed disk D ∪ S1

∞.)
A principal example is the Farey tesselation τ∗ which has already

been discussed in the third lecture. As we have seen, τ 0
∗ is the image of

the rational numbers plus infinity under the Cayley transform, and we
shall simply identify τ 0

∗ with this set denoted τ 0
∗ = Q̄ = Q∪{∞} ⊂ S1

∞.
Thus, p

q
∈ Q̄ is identified with the point p+iq

p−iq
∈ S1

∞ ⊂ C thereby

establishing a bijection between τ 0
∗ and the set of all points in the unit

circle whose coordinates are rational.
For another example of a tesselation, we might begin with the trian-

gle spanned by 0
1
, 1

0
, 1

1
and recursively define the ideal triangle adjacent

to an edge with endpoints ξ, η ∈ S1
∞ already constructed to have its

other vertex at the Euclidean midpoint of the appropriate circular seg-
ment with endpoints ξ, η. We shall call this the dyadic tesselation τd
since its set τ 0

d of ideal vertices is the collection of all points of the form
e2πiθ, where θ = p

2n is a dyadic rational, for some n ∈ Z and some odd
p ∈ Z.

More generally, given any countable dense subset S ⊂ S1
∞ plus a

bijection β : N → S, there is a corresponding tesselation τ defined as
follows. Begin with the ideal triangle spanned by β(1), β(2), β(3) and
recursively define the ideal triangle adjacent to an edge with endpoints
ξ, η ∈ S1

∞ already constructed to have its other vertex at β(i), where
i ∈ N is the least index with β(i) in the appropriate circular segment
with endpoints ξ, η. Density of S in S1

∞ shows that D −∪τ consists of



LAMBDA LENGTHS 69

ideal triangles with vertices in S, and it is easy to see that τ is locally
finite by construction. In fact, any tesselation of D clearly arises in
this way thus giving an explicit sense of the collection of objects we
are studying here, namely, enumerated countable dense subsets of the
circle.

A distinguished oriented edge or doe on a tesselation τ is simply the
specification of an orientation on some geodesic in τ . We shall take
the edge connecting 0

1
to 1

0
as the standard doe on τ∗ and τd letting τ ′∗

and τ ′d, respectively, denote the Farey and dyadic tesselations with this
choice of doe. Let T ess′ denote the collection of all tesselations with
doe of D.

A key point is that tesselations with doe are “combinatorially rigid”
in the following sense. Choosing τ ′∗ as a kind of basepoint for T ess′
and given any other τ ′ ∈ T ess′, there is a canonically defined mapping
f = f 0

τ ′ : τ 0
∗ → τ 0 defined recursively as follows. Start by defining f(0

1
)

and f(1
0
), respectively, to be the initial and terminal points of the doe

of τ ′. There is a unique ideal triangle complementary to τ lying to
the right of the doe, and f(1

1
) is defined to be the ideal vertex of this

triangle distinct from f(0
1
) and f(1

0
). This defines f on the vertices of

an ideal polygon P with frontier in τ∗.
If e is a geodesic in D and f is a homeomorphism of S1∞, then we

let f(e) denote the geodesic spanned by its vertex images and similarly
let f(P ) denote the ideal polygon spanned by the images of vertices of
P .

We recursively extend f in this same manner as before: a geodesic
e in the frontier of P also lies in the frontier of a unique ideal triangle
complementary to τ∗ whose interior is disjoint from P , there is likewise a
unique ideal triangle complementary to τ containing f(e) in its frontier
whose interior is disjoint from f(P ), and we extend f by mapping the
vertex of the former triangle distinct from the endpoints of e to the
vertex of the latter triangle distinct from the endpoints of f(e).

Given τ ′ ∈ T ess′, we have thus defined the mapping f 0
τ ′ : τ 0

∗ → τ ′,
and by construction, this mapping is order-preserving. An elementary
argument shows that an order-preserving mapping defined on a dense
subset of the circle interpolates a unique orientation-preserving home-
omorphism of the circle. The homeomorphism of the circle induced in
this way by f 0

τ ′ is denoted

fτ ′ : S1
∞ → S1

∞

and is called the characteristic mapping of τ ′ ∈ T ess′.
Let Homeo+(S1) denote the topological group of all orientation-

preserving homeomorphisms of S1
∞ with the compact-open topology,
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i.e., a sub-basis for this Hausdorff topology is given by those functions
that map a specified compact set on S1

∞ to a specified open set in S1
∞.

The assignment τ ′ 7→ fτ ′ gives a mapping of T ess′ into Homeo+(S1).

Lemma 7.1. The mapping

T ess′ → Homeo+(S1)

τ ′ 7→ fτ ′

is a bijection.

Proof. Suppose that f ∈ Homeo+(S1), and define a collection τ =
{f(e) : e ∈ τ∗}, where as before, if e ∈ τ∗ has ideal points ξ, η, then f(e)
is the geodesic with ideal points f(ξ), f(η). τ is evidently a countable
family of geodesics. Density of τ 0

∗ and continuity of f imply density of
f(τ 0

∗ ) from which it follows that complementary regions to τ are indeed
ideal triangles, and local finiteness of τ follows from that of τ∗. Thus,
τ is a tesselation, and we take as doe the oriented geodesic connecting
f(0

1
) to f(1

0
) to produce τ ′f ∈ T ess′. The assignment f → τ ′f is a

two-sided inverse to τ ′ 7→ fτ ′. �

We induce a topology on T ess′ using the previous lemma. The
Möbius group PSL2(R) acts continuously on the left on Homeo+(S1)
by composition, and there is an induced topology on the quotient.
Furthermore, f ∈ Homeo+(S1) also acts on τ ′ ∈ T ess′ in the natural
way, where f(τ) = {f(e) : e ∈ τ} in the previous notation, with
the doe on f(τ) given by the image under f of the doe for τ . The
assignment of characteristic mapping is evidently equivariant for these
actions. Define the quotient space

T ess = T ess′/PSL2(R),

which is thus homeomorphic toHomeo+(S1)/PSL2(R) and of principal
interest.

We say that τ ′ ∈ T ess′ is normalized if the doe connects the point 0
1

to the point 1
0

and if the other vertex of the triangle to the right of the

doe is the point 1
1
. Likewise, we say that f ∈ Homeo+(S1) is normalized

if f fixes each of the points 0
1
, 1

0
, 1

1
. Since a Möbius transformation is

determined by its values at three points, we conclude that T ess is
homeomorphic to the collection of all normalized tesselations with doe
and that Homeo+(S1)/PSL2(R) is homeomorphic to the collection of
all normalized orientation-preserving homeomorphisms of the circle. In
particular, T ess and Homeo+(S1)/PSL2(R) are infinite-dimensional
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Hausdorff spaces. In effect, we introduced doe’s only to kill them by
taking the quotient by the Möbius group, and this little manipulation
was performed in order to produce a space of orbits which is Hausdorff.

Given a tesselation τ ′ with doe representing a point of T ess, there is a
well-defined shear coordinate assigned to each geodesic in τ defined just
as in the previous lecture. We may use the characteristic mapping fτ ′

to index these shear coordinates by edges of τ∗ in the natural way, i.e.,
given e ∈ τ∗, the geodesic f(e) ∈ τ triangulates an ideal quadrilateral
complementary to τ − {e}, and the logarithm of the cross ratio of this
quadrilateral computed as before is called the shear coordinate of τ ′ on
e.

Theorem 7.2. The assignment of shear coordinates gives an embed-
ding

T ess ≈ Homeo+(S1)/PSL2(R) → Rτ∗

onto an open subspace, where the target is given the weak topology, thus
endowing T ess with the structure of an infinite-dimensional Fréchet
space.

Proof. Since the cross ratio is a complete invariant of a four-tuple of
points under the action of the Möbius group, the assigment of shear
coordinates is indeed an injection as before. Continuity of this mapping
follows from the definition of the topology on T ess as induced by the
compact-open topology on Homeo+(S1) and the definition of the weak
topology on a function space, where a sub-basis is given by allowing
only finitely many coordinates to vary. �

Myriad interesting questions and problems arise: Choose your fa-
vorite class of homeomorphisms of the circle (smooth, Hölder of some
exponent, really any class), and ask for a topological characterization
of the corresponding tesselations or for the characterization in terms
of shear coordinates. In particular, characterize the image of this em-
bedding. Describe the inverse of a circle homeomorphism in terms of
tesselations or in coordinates. Describe composition of circle homeo-
morphisms in terms of tesselations or coordinates. Are inversion and
composition Fréchet maps in this structure? Among the first class of
questions, we presently know just one answer, which we shall present
in Theorem 7.6.

A decoration on a tesselation τ is the assignment of one horocycle

centered at each point of τ 0. The space T̃ ess
′
of decorated tesselations
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with doe admits a natural topology as a Rω
>0-bundle over T ess′, where

the fiber is given the weak topology. T̃ ess
′
again admits a natural con-

tinuous left action of the Möbius group acting not only on tesselation
with doe as before but also on horocycles, and we define the quotient

T̃ ess = T̃ ess
′
/PSL2(R).

By definition, the map T̃ ess → T ess which forgets decoration is a
continuous surjection.

Given a decorated tesselation τ̃ ′ with doe representing a point of

T̃ ess, there is a well-defined lambda length assigned to each geodesic
in τ defined just as in the classical case: the decoration on the triangle
to the right of the doe determines lambda lengths on the frontier edges
of this triangle by Lemma 4.3, and lambda lengths on consecutive edges
are then uniquely determined according to Lemma 4.7. We may again
use the characteristic mapping fτ ′ to index these lambda lengths by
edges of τ∗ in the natural way.

Theorem 7.3. The assignment of lambda lengths gives an embedding

T̃ ess→ Rτ∗
>0

onto an open subspace, where the target is given the weak topology, thus

endowing T̃ ess with the structure of an infinite-dimensional Fréchet
space.

Proof. The proof closely parallels the classical case, where the lambda
lengths are used to uniquely determine a mapping τ 0

∗ → L+, the only
significant point being continuity of the mapping, which is guaranteed
by our definition of topologies. �
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Figure 16 The multiplicative group Λ(s).

There is an associated basic deformation of lambda lengths described
as follows. The four points 0

1
, 1

0
,±1

1
∈ S1

∞ decompose S1
∞ into four com-

ponent arcs, one in each of the quadrants I, II, III, IV in R2 (enumer-
ated in counter-clockwise order starting from quadrant I where both
coordinates are positive). For s ∈ R>0, define a piecewise-Möbius map-
ping on S1

∞ by

Λ(s)(ξ) =





( s s− s−1

0 s−1

)
ξ, for ξ in quadrant I;

( s−1 0

s− s−1 s

)
ξ, for ξ in quadrant II;

( s−1 0

s−1 − s s

)
ξ, for ξ in quadrant III;

( s s−1 − s

0 s−1

)
ξ, for ξ in quadrant IV.

See Figure 16. The four points 0
1
, 1

0
,±1

1
span an ideal quadrilateral

with one frontier geodesic in each quadrant, and one can check from
the formula that the one-parameter family in each quadrant is a family
of hyperbolic transformations with invariant geodesic in D given by
the corresponding frontier geodesic of this quadrilateral as illustrated
in Figure 16. In particular, Λ(s) fixes each point 0

1
, 1

0
,±1

1
and hence is

a homeomorphism of the circle for each s.
These four one-parameter families of isometries are “tuned” to guar-

antee that each Λ(s) is furthermore once-continuously differentiable
on S1

∞. Put another way, on the rays in L+ which project to 0
1
, 1

0
,
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the function Λ(s) acts by multiplication by s, and on the rays in
L+ which project to ±1

1
, the function Λ(s) acts by multiplication by

s−1. We may thus think of Λ(s) as acting on L+ itself in the natu-
ral way by a piecewise SO+(2, 1) homeomorphism giving a continu-
ous one-parameter family of homeomorphisms of L+. As such, each
Λ(s) acts on the lambda length of pair h(u), h(v) of horocycles by
λ(h(u), h(v)) 7→ λ(h(Λ(s)u), h(Λ(s)v)), for u, v ∈ L+, and hence Λ(s)

acts on T̃ ess
′
.

Summarizing, we have

Lemma 7.4. Λ(s) is a multiplicative subgroup of Homeo+(S1), where
each Λ(s) is once-continuously differentiable on S1 with the four fixed
points 0

1
, 1

0
,±1

1
. If τ ′ is any tesselation with doe connecting 0

1
to 1

0

with complementary triangles spanned by 0
1
, 1

0
, 1

1
and 0

1
, 1

0
,−1

1
, then Λ(s)

leaves invariant every lambda length coordinate of the class of τ ′ except

that it scales the lambda length of the doe by the factor s.

Proof. In light of the remarks above, only the last sentence requires
comment. Each edge e ∈ τ ′ other than the doe has both its endpoints
in some common quadrant in R2, and therefore Möbius invariance of
lambda lengths shows that its lambda length is invariant under Λ(s)
for each s. On the other hand, the doe has endpoints 0

1
and 1

0
, the

points u1, u2 ∈ L+ lying over these points map by Λ(s)(uj) = suj, for
j = 1, 2, and hence

λ(h(u1), h(u2)) 7→λ(h(su1), h(su2))

=
√− < su1, su2 >

=s
√− < u1, u2 >

=sλ(h(u1), h(u2)).

�

The same list of myriad questions and problems are relevant in the
current decorated case as in the undecorated case. As was promised
before, we finally give the unique such partial success, as follows.

An orientation-preserving mapping f : D → D is said to be quasi-
conformal if

supz∈D

|fz| + |fz̄|
|fz| − |fz̄|

is finite. In fact, any smooth f maps infinitesimal circles to infinites-
imal ellipses, and the eccentricity of such an ellipse is the expression
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whose supremum we take here; in particular, f is conformal if and only
if it maps infinitesimal circles to circles, and the expression is iden-
tically equal to one. Every quasiconformal mapping of D extends to
an orientation-preserving homeomorphism of S1

∞, and such boundary
values of a quasiconformal mapping are called quasisymmetric homeo-
morphisms of the circle. Conjugating by the Cayley transform, a more
intrinsic characterization of a quasisymmetric mapping f : R → R is
that

∃M∀x∀t M−1 < lim
f(x+ t) − f(x)

f(x) − f(x− t)
< M.

We refer the reader to [1, 2, 22] for a detailed discussion of quasiconfor-
mal and quasisymmetric mappings including the facts just mentioned.
In practice here, we shall recognize quasisymmetric mappings of S1

∞ as
boundary values of quasiconformal mappings of D.

Example 7.5. The characteristic mapping of the dyadic tesselation τ ′d
with doe is especially interesting and is called the Minkowski ? func-
tion. One can see directly from the definition that it is not quasisym-
metric, and it can be shown to be differentiable only at Q̄ with vanishing
derivatives there. By definition, it conjugates the group of piecewise
PSL2(Z) homeomorphisms of the circle to the Thompson group T of
the circle. We shall have more to say about this example later (cf.
Lecture 11).

We say that a function λ : τ∗ → R>0 is pinched if

∃K ∀e ∈ τ∗ K−1 < λ(e) < K.

Theorem 7.6. [joint with Dennis Sullivan in [56]] Suppose that the
function λ : τ∗ → R>0 is pinched. Then there is a decorated tessela-
tion realizing λ as its lambda length coordinates, and the corresponding
homeomorphism of the circle is quasisymmetric.

Proof. For the first part, since the lambda lengths are pinched, so too
are the corresponding h-lengths (defined in analogy as the lengths along
horocycles between geodesics) uniformly bounded above and below.
The mapping from lambda lengths to cross ratios is again described by
Lemma 4.9b, so the corresponding cross ratios are likewise uniformly
bounded above and below. The proof of the first part is verbatim the
same as the proof in Theorem 5.2 that the mapping from the universal
cover of the surface to D is a homeomorphism. Indeed, one uses the
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lambda lengths to recursively define a mapping D → D pointwise fix-
ing the triangle spanned by 0

1
, 1

0
, 1

1
which is a continuous injection by

construction, and the facts just mentioned are used in the same man-
ner as before to prove that this mapping is in fact a homeomorphism
φ : D → D. This homeomorphism thus extends to an order-preserving
mapping from τ 0

∗ to another countable dense subset of S1
∞ and there-

fore interpolates a normalized homemorphism f : S1
∞ → S1

∞ of the
circle corresponding to a normalized tesselation τ ′ of D. Furthermore
τ ′ comes equipped with a decoration τ̃ ′ determined by the lambda
lengths as before.

To see that f is quasisymmetric, we shall show that f is given by the
boundary values of a quasiconformal homeomorphism Φ : D → D, and
we must construct Φ differently from φ to see that it is quasiconformal.

To this end, since the lambda lengths are pinched, we may scale
them all by some overall factor to guarantee that they are all greater
than two. It suffices to prove the result for the scaled lambda lengths,
for then the original lambda lengths describe a different decoration on
the same underlying tesselation, so the two corresponding homeomor-
phisms of the circle coincide.

Consider the Farey tesselation τ∗ decorated so that each lambda
length is equal to 2. The complementary regions to the union of all
the horocycles in this decoration with ∪τ∗ are of one of two types:
either “hexagons” whose alternating sides are geodesic segments of
length 2log2 (by Lemma 4.1) and horocyclic segments of length 1/2
(by Lemma 4.4), or “strips” bounded by a pair of asymptotic geodesic
rays and a horocyclic segment of length 1/2. Let H∗ denote the union
of all the hexagons and S∗ denote the union of all the strips.

Likewise, the horocycles in the decoration of τ̃ ′ are disjoint because of
our scaling. The complementary regions to the union of these horocy-
cles with ∪τ are again of two types: either hexagons whose alternating
sides are geodesic segments of length between 2log2 and 2log2+4logK
and horocyclic segments of length between (2K4)−1 and 2K4, or strips
bounded by a pair of asymptotic geodesic rays and a horocyclic seg-
ment of length between these same latter bounds. Let H denote the
union of all these hexagons for τ and S denote the union of all these
strips.

There is a natural one-to-one correspondence between the hexagons
in H∗ and the hexagons in H, and because of the bounds on lengths
of geodesic and horocyclc sides, there are quasiconformal homeomor-
phisms uniformly near the identity on the boundaries between corre-
sponding hexagons which combine to give a quasiconformal mapping
Φ : H∗ → H.
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In order to extend to the strips, consider a strip whose horocylic
segment has length h. Such a strip is conformal to the region in upper
half-space U described by {z = x + iy : 0 ≤ x ≤ 1 and h−1 ≤ y}.
There is thus a quasiconformal homeomorphism from the collection
of strips in S lying inside a common horoball for τ̃ ′ to a consecutive
collection of regions {z = x + iy : n ≤ x ≤ n + 1 and y = h−1

n } in U ,
where n ∈ Z and the hn are uniformly bounded above and below. The
corresponding region in S∗ is conformal to {z = x + iy : y = 2}, and
it is easy to extend Φ across this region preserving quasiconformality.
Perform this extension for each horoball to finally construct the desired
quasiconformal mapping Φ : D → D with boundary values given by
f : S1

∞ → S1
∞. �

8. A Lie algebra for the group of circle homeomorphism

This lecture is based upon [42, 61]. We have seen in the previ-

ous lecture that each of T ess and T̃ ess have affine coordinates giv-
ing them the structure of Fréchet manifolds, and we let tess and t̃ess
denote the respective Fréchet tangent spaces. We would like to use
this to induce a reasonable Lie algebra structure corresponding to the
topological group Homeo+(S1) itself, and our idea is very simple: As
spaces, we may identify T ess with the space Homeon(S1) of all nor-
malized orientation-preserving homeomorphisms of the circle, namely,
orientation-preserving homeomorphisms of the circle fixing the three
points 0

1
, 1

0
, 1

1
. Since an element of PSL2(R) is determined by its values

at these (or any distinct) three points, we might think that tess× sl2
is a sensible kind of tangent space to Homeo+(S1) itself, where sl2 is
the Lie algebra of SL2(R), the double cover of PSL2(R).

In fact to employ lambda lengths, we shall go a bit further and define

the group H̃omeon(S1) of decorated and normalized homeomorphisms

of the circle to be the set of all pairs (f̃ , f) with f ∈ Homeon(S1)

and f̃ : T̃ ess → T̃ ess a homeomorphism covering f with the obvi-
ous group structure. In particular, there is a surjective topological

group homomorphism H̃omeon(S1) → Homeon(S1) gotten by pro-
jecting onto the second factor. There is furthermore an isomorphism

H̃omeon(S1) ≈ T̃ ess of H̃omeon(S1)-spaces gotten by assigning to
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(id, id) ∈ H̃omeon(S1) the Farey tesselation τ∗ equipped with its canon-
ical decoration, where all lambda lengths are unity. Under this isomor-

phism, t̃ess becomes the tangent space to H̃omeon(S1) at the identity.
As in the previous discussion for Homeon(S1), we seek a natural Lie

algebra structure on the product t̃ess× sl2.
Recall from Lemma 3.2 that PSL2(Z) acts simply transitively on

the oriented edges of the Farey tesselation τ∗, and let eA denote the
oriented edge of τ∗ which is the image eIA under the right action of A
on the standard doe eI connecting 0

1
to 1

0
. Likewise, let p

q
A denote the

image of the point p

q
∈ S1

∞ under A.

We have already in Lemma 7.4 described the basic deformation Λ(s)
of the single lambda length on the doe, and we may extend this to
other edges of the Farey tesselation as follows. For each A ∈ PSL2(Z),
define the corresponding

ΛA(s) = A−1Λ(s)A,

which we again may regard as a family of piecewise-SO+(2, 1) homeo-
morphisms of L+. As before, each ΛA(s) acts on the lambda length of

pair of horocycles, and hence ΛA(s) acts on T̃ ess
′
.

Lemma 8.1. For each A ∈ PSL2(Z), ΛA(s) is a one-parameter multi-
plicative subgroup ofHomeo+(S1), where each ΛA(s) is once-continuously
differentiable on S1 with four fixed points given by 0

1
A, 1

0
A,±1

1
A. Fur-

thermore, for any decoration on the Farey tesselation τ∗, ΛA(s) leaves
invariant every lambda length except that it scales the lambda length of
the unoriented edge underlying eA by the factor s.

Proof. All the assertions for ΛA(s) follow from the corresponding as-
sertions for Λ(s) itself in Lemma 7.4. �

Thus, these one-parameter families ΛA(s) may be thought of as the

coordinate deformations at the identity of H̃omeon(S1), and we are led
to consider the corresponding vector fields on S1.

Lemma 8.2. The vector field on S1 corresponding to (
a b
c d

) ∈ sl2 is

given by

{(b+ c) cosθ + (a− d) sinθ + (c− b)} ∂
∂θ
,

where θ is the usual angular coordinate on the circle.



LAMBDA LENGTHS 79

Proof. For the proof, we shall let (
α(t) β(t)
γ(t) δ(t)

) denote the correspond-

ing one-parameter subgroup of SL2(R), so a = α′(0), . . . , d = δ′(0),
where α(0) = 1 = δ(0), β(0) = 0 = γ(0), α′(0) + δ′(0) = 0, and
the prime denotes the derivative with respect to t. The action of

(
δ −β

−γ α
) corresponds to the right action of the Möbius group, and

we conjugate its action on upper half-space by the Cayley transform
to compute that eiθ ∈ S1 maps to

[(δ − α)i− (γ + β)] + [(δ + α)i− (γ − β)]eiθ

[(δ + α)i+ (γ − β)] + [(δ − α)i+ (γ + β)]eiθ
.

Take d
dt
|t=0 of −i times the logarithm of this expression to derive the

asserted formula. �

We refer to a vector field as in Lemma 8.2 as a global sl2 vector field
and shall take the standard basis for sl2 given by

e =
( 0 1

0 0

)
, f =

( 0 0
1 0

)
, h =

( 1 0
0 −1

)
,

where [h, e] = 2e, [h, f ] = −2f, [e, f ] = h. In this notation, the deriva-
tive of Λ(s) is directly calculated to be

ϑ =





( 1 2

0 −1

)
= h+ 2e, on quadrant I;

( −1 0

2 1

)
= −h+ 2f, on quadrant II;

( −1 0

−2 1

)
= −h− 2f, on quadrant III;

( 1 −2

0 −1

)
= h− 2e, on quadrant IV.

Writing ϑ = ϑ(θ) ∂
∂θ

, we graph this function ϑ(θ) in Figure 17 and
remark that though it “looks like” the usual sine function, it is once-
but not twice-continuously differentiable.
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Figure 17 Graph of The elementary vector field ϑ.

The vector field ϑ lives naturally in the space psl2 defined to consist of
all piecewise sl2 vector fields on the circle S1

∞ with finitely many pieces
and with breakpoints in the piecewise structure among the rational
points Q̄ ⊂ S1. Though ϑ is itself actually defined and continuous at
its breakpoints, we do not require this of vector fields in psl2, which are
regarded as undefined at their breakpoints. (The reason for allowing
these more general vector fields in psl2 is that brackets of conjugates of
ϑ will fail to be defined at their breakpoints as we shall see.) Given two
elements of psl2, there is a natural bracket defined by taking the crudest
common refinement of their pieces and taking the usual bracket from
sl2 on each such piece. Thus, psl2 is naturally a Lie algebra containing
sl2 as the sub-algebra of global sl2 vector fields.

Having thus defined the very special element ϑ ∈ psl2, we proceed
to define

ϑA = A−1ϑA, for A ∈ PSL2(Z),

using the adjoint action on each piece. A short calculation shows that
ϑS = ϑ, where we here and below adopt the standard notation of
Lemma 3.2 for elements of the modular group PSL2(Z). Thus, if e ∈ τ∗
is an unoriented edge, then we may associate the well-defined element
ϑe = ϑA = ϑSA ∈ psl2, where A ∈ PSL2(Z) maps the unoriented edge
underlying the doe of τ∗ to the edge e ∈ τ∗. The vector field ϑe is called
the elementary vector field associated with e ∈ τ∗. Figure 18 illustrates

the elementary vector field ϑA for A = (
a b
c d

), with the ideal points

indicated in their Farey enumeration where the matrix near an interval
indicates the corresponding element of sl2 (and where we have tacitly
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assumed in drawing the figure that the entries of ±A are non-negative
with |c| ≥ |a|).

Figure 18 The elementary vector field ϑA.

An elementary vector field ϑA is defined everywhere on S1
∞, even at

its breakpoints since ϑ itself has this property, so it makes sense to
define the normalization ϑ̄A = ϑA − x ∈ psl2 of ϑA, where x ∈ sl2
is chosen so that ϑA agrees with x at the points 0

1
, 1

0
, 1

1
. For some

examples, ϑ̄ = ϑ since it already vanishes at these three points (and at
−1

1
as well), and a short calculation furthermore shows that

ϑ̄Un = ϑUn + h− 2(n− 1)f, for n > 1.

Before giving the next definitions, let us pause to give their motiva-
tion. We wish to calculate the Lie algebra closure in psl2 of sl2 and the
normalized elementary vector fields. Exploratory calculations of brack-
ets of these vector fields lead to the vector fields on the circle we next
introduce, which have remarkable algebraic properties. After studying
these properties, we shall then prove that the Lie algebra closure we
seek is actually all of psl2 and defive a surprisingly simple additive basis
of it.

For each oriented edge eA = eIA of τ∗ with A ∈ PSL2(Z), define the
corresponding fan vector field

φA =
∑

n≥0

ϑ̄UnA
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and hyperfan vector field

ψA =
∑

n≥0

nϑ̄UnA.

The initial point of the oriented edge eA is called the pin of the corre-
sponding fan or hyperfan. Because of the normalization, these infinite
sums converge pointwise to vector fields on the circle except perhaps
at the pin, and the convergence is uniform on each compactum not
containing the pin. (It is for this reason, to get such convergent sums,
that we normalized the elementary vector fields.) There is, however,
no reason for these vector fields to live in psl2, i.e., have only finitely
many pieces, and yet we have:

Lemma 8.3. We have the equalities

φU =





−2e, on quadrant I;

2h− 2f, on quadrant II;

0, on quadrants III and IV,

ψI =

{
−2e, on quadrants I and II;

0, on quadrants III and IV.

Proof. Letting AdX(x) = X−1xX for x ∈ sl2 and X ∈ PSL2(Z), we
first calculate that

AdU(e) = h+ e− f, AdU(f) = f, AdU(h) = h− 2f.

The equality for the fan φU is proved separately in each quadrant,
where one confirms that AdU(h − 2e) + AdU2(−h − 2f) + 2h − 2f =
−2e for quadrant I, and quadrants III and IV are immediate. Using
the expression given before for the normalizaton ϑ̄Un , the identity in
quadrant II amounts to

2h− 2f = [
n−1∑

j=1

AdUj (−h+ 2f)] + AdUn(h+ 2e)

+ AdUn+1(h− 2e) + [
n+1∑

j=1

h− 2(j − 1)f ],

which is proved by induction on n ≥ 2. Likewise for the hyperfan ψI ,
the equality in quadrants III and IV is immediate, and the equality
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in quadrants I and II is tantamount to the identity

f − e− h = [
n−1∑

j=1

AdUj(h− f)] − AdUn(e),

which again follows by induction on n ≥ 2. �

Corollary 8.4. For any A in the modular group, the fan φA and hy-
perfan ψA lie in psl2.

Proof. Two fans or hyperfans are conjugate modulo an element of sl2,
i.e.,

φAB − B−1φAB, ψAB − B−1ψAB ∈ sl2, for A,B ∈ PSL2(Z),

and the reason these differences do not vanish identically is that fans
or hyperfans are linear combinations of normalized vector fields. Nev-
ertheless, it follows from this observation and Lemma 8.3 that fans
and hyperfans indeed have only finitely many pieces in their piecewise
Möbius structure. �

Whereas the elementary vector fields are once continuously differ-
entiable on the circle, fans are continuous but not differentiable, and
hyperfans are not even continuous, here using that any fan is conjugate
to φI and any hyperfan conjugate to ψI modulo sl2.

Furthermore, ψI integrates to the square of the primitive parabolic
transformation in the modular group fixing the endpoint 1

0
of the doe

eI and rotating counter-clockwise about this point in positive time. In
general, consider the hyperfan ψA and let VA be the vector field which
likewise integrates to the primitive parabolic modular transformation
fixing the endpoint of eA. If the triangle complementary to τ∗ on the
right of the doe lies to the right of the oriented edge eA, then ψA

vanishes on the right of eA and agrees with VA on the left; if the triangle
complementary to τ∗ to the right of the doe lies to the left of the oriented
edge eA, then ψA vanishes on the left of eA and agrees with −VA on the
right. Thus, hyperfans are “piecewise parabolic” maps on the circle (in
contrast to the “earthquakes introduced by Thurston [68], which are
“piecewise hyperbolc”).

Theorem 8.5. The Lie algebra closure of sl2 and the collection of
all elementary vector fields {ϑ̄e : e ∈ τ∗} is the entire Lie algebra psl2.
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Furthermore, psl2 is generated as a vector space by sl2 and the collection
of all hyperfans.

Proof. The ray from the origin in R2 through the point −1
2

decomposes
the second quadrant II into two regions denoted II1, which contains
−1

1
in its closure, and II2, which contains 0

1
in its closure. Applying

the formulas in Figure 18 to the case A = U , we find that

ϑ̄U =





−2e, on quadrant I;

4h− 4f + 2e, on region II1;

4f, on region II2;

0, on quadrants III and IV.

Calculating brackets, we have

[ϑ̄U , e] =





0, on quadrants I, III and IV.

8e+ 4h, on region II1;

−4h, on region II2,

[[ϑ̄U , e], h] =

{
−16f, on region II2,

0, else,

so [[ϑ̄U , e], h] is supported on a single circular segment C ⊂ S1
∞. Since

sl2 is simple, we may likewise realize any element of sl2 on C, and in
particular, both ψTU and ψSTU , which are supported on C, lie in the Lie
algebra generated by the elementary vector fields and sl2. Since this
Lie algebra is by definition closed under the adjoint action of SL2(R),
it follows that every hyperfan lies in this algebra.

To complete the proof, we must show that sl2 and hyperfans span
psl2 as a vector space. To this end, consider the circular segment in S1

∞
whose endpoints are given by the ideal points of eA, where the entries

of A = (
a b
c d

) ∈ SL2(R) are non-negative. Let C denote the circu-

lar sub-segment bounded by the ideal points of eUA. By the previous
characterization of hyperfans, ψA and ψTA take common values on the
intersection of their supports, and ψUA, ψSUA, (ψA −ψTA) all have sup-
port C, and furthermore, these vector fields restricted to their common
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support C are given by

ψUA = −2(b+ d)2 e + 2(a+ c)2 f − 2(a+ c)(b+ d) h,

ψSUA = 2b2 e − 2a2 f + 2ab h,

(ψA − ψTA) = −2d2 e + 2c2 f − 2cd h.

The matrix

( −2(b+ d)2 2(a+ c)2 −2(a+ c)(b+ d)
2b2 −2a2 2ab

−2d2 2c2 −2cd

)

is found to have determinant 8(ad−bc)3 = 8 6= 0, and hence any vector
field supported on C lies in the span of these. A similar argument
using the hyperfans ψSA, ψSTA, ψSUA likewise handles the circular sub-
segment bounded by the ideal points of eTA, and indeed the analogous
argument for a circular segment lying in the lower half-plane completes
the proof. �

Remark 8.6. In fact, one can give a complete set of additive relations
among hyperfans, namely, for any A ∈ PSL2(Z), we have

ψU−1A − 2ψA + ψUA = ψU−1SA − 2ψSA + ψUSA.

Indeed from the definitions of fans and hyperfans, we find

φA − φUA = ϑ̄A = φSA − φUSA,

ψA − ψUA = φA, ψSA − ψUSA = φSA

arising from the identity ϑA = ϑSA discussed before, which thus yields
the asserted relations among hyperfans. Furthermore, these relations
are linearly independent, and they span the space of linear dependen-
cies among hyperfans, cf. Proposition 6 of [42]. One can use this result
together with further calculations to give an additive basis for psl2,
namely, e, f, h and

{ψA : A ∈ {I} ∪ UP ∪ U−1N ∪ STP ∪ ST−1N ,

where P is the monoid of products of T, U and N is the monoid of
products of T−1, U−1, cf. Theorem 2.1 of [61]. We shall not prove these
facts here since the arguments in print are somewhat involved and yet
are the simplest we know. In contrast, we have included the proof of
Theorem 8.5 since it is much simpler than the previously published
proof.
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This completes our algebraic discussion of the Lie algebra psl2 that
arises by considering lambda lengths as coordinate deformations of the

space H̃omeon of decorated normalized homeomorphisms of the circle,
and we finally turn our attention to the analysis of these deformations.

Let Diff+(S1) ⊂ Homeo+(S1) denote the subgroup of infinitely dif-
ferentiable orientation-preserving homeomorphisms of the circle, whose
Lie algebra diff+ consists of all infinitely differentiable real vector fields
f(θ) ∂

∂θ
of the circle, which we may Fourier expand

f(θ) ∼
∑

n≥0

an cos nθ + bn sin nθ

=
∑

n∈Z

cn e
inθ, with cn = c̄n.

Just as for homeomorphisms, letDiffn(S1) = Diff+(S1)∩Homeon(S1)
denote the subgroup of normalized diffeomorphisms fixing 0

1
, 1

0
, 1

1
with

its Lie algebra diffn of all infinitely differentiable vector fields which
vanish at these three points. Given any vector field V = f(θ) ∂

∂θ
defined

on S1, we define its normalization

V̄ = f̄(θ)
∂

∂θ
= {f(θ) + α cos θ + β sin θ + γ} ∂

∂θ
,

where α, β, γ ∈ R are chosen so that f̄(θ) = 0 for θ = 0, π, 3π/2. For
example with z = einθ, a calculation gives the following normalized
trigonometric fields for n ≥ 2:

cos nθ
∂

∂θ
=

1

2

{
i(zn + z−n) + αi(z + z−1) + β(z − z−1) + 2γi

}
z
d

dz
,

with
2α = (−1)n − 1, 2γ = −1 − (−1)n,

2β = (−1 − (−1)n) − (−1)n+1(in + i−n),

and

sin nθ
∂

∂θ
=

1

2

{
zn − z−n + αi(z + z−1) + β(z − z−1) + 2γi

}
z
d

dz
,

with

α = 0 = γ, 2β = i(−1)n+1(in − i−n),

which constitute a natural basis for diffn that we shall require later.
Put another way, the exponential functions einθ admit the normaliza-
tion

ēinθ = einθ − [bn0 + bn1e
iθ + bn−1e

−iθ],
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where

bn0 =





+1, n ≡ 0(4);

0, n ≡ 1(4);

+1, n ≡ 2(4);

0, n ≡ 3(4);

bn1 =





0, n ≡ 0(4);

+1, n ≡ 1(4);

−i, n ≡ 2(4);

0, n ≡ 3(4);

bn−1 =





0, n ≡ 0(4);

0, n ≡ 1(4);

+i, n ≡ 2(4);

+1, n ≡ 3(4).

Theorem 8.7. If A = (
a b
c d

) ∈ PSL2(Z), then ϑ̄A ∼ ∑
n∈Z

cn e
inθ ∂

∂θ
,

where for n2 > 1, we have

πi(n3 − n) cn = −[(c− a)2 + (b− d)2]

[
(b− d) − i(a− c)

(b− d) + i(a− c)

]n

+ 2(c2 + d2)

[
d− ic

d+ ic

]n

+ 2(a2 + b2)

[
b− ia

b+ ia

]n

− [(c+ a)2 + (b+ d)2]

[
(b+ d) − i(a+ c)

(b+ d) + i(a + c)

]n

,

and the Fourier modes c0, c±1 are chosen to guarantee that the expan-
sion is normalized, i.e., ϑ̄A ∼ ∑

n2>1 cn ē
inθ ∂

∂θ
.

Proof. Since the normalized elementary vector field ϑ̄A is once contin-
uously differentiable on the circle, we may twice integrate by parts the
usual expression for Fourier coefficients to conclude that

cn =
1

2πi

1

n3 − n

∑

j

zj e
inθ|∂Ij

, for n2 > 1,

where Ij , for j = 1, 2, 3, 4, are the intervals in the psl2 structure of ϑ̄A

and ϑ̄A =
{
xj cosθ + yj sinθ + zj

}
∂
∂θ

on Ij .
We may calculate these zero-modes zj explicitly from Figure 18 for

A 6= I, S, where there are actually four separate cases depending upon
in which quadrant lies eA. In each case, the explicit not-entirely-
painless calculation yields the asserted expression using that the Farey
point p

q
∈ S1

∞ corresponds to the complex number p+iq

p−iq
. Notice that

for n = 0,±1 both sides of the asserted expression vanish identically.
In particular for the elementary vector field ϑI , the analogous direct
calculation gives ϑI ∼ 8

πi

∑
n≡2(4)

1
n3−n

einθ ∂
∂θ

, which likewise agrees
with the asserted formula. �

This satisfactorily describes the harmonic analysis of homeo+, and
we finally wish to understand the reverse inclusion. To this end and
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to employ lambda lengths, define D̃iffn(S1) to be the collection of all

pairs (f̃ , f) , where f ∈ Diffn(S1) and f̃ is a homeomorphism of T̃ ess
covering f ; there is natural group structure on D̃iffn(S1) as before and

a natural surjective group homomorphism D̃iffn(S1) → Diffn(S1).
We define a section

σ : Diffn(S1) → D̃iffn(S1)

as follows. If f ∈ Diffn(S1), we may conjugate by the Cayley trans-
form C : U → D to produce a diffeomorphism fC = C−1◦f◦C : R → R,
where fC fixes 0, 1 ∈ R. A horocycle in U tangent to x ∈ R is deter-
mined by its Euclidean diameter d, and we define the Euclidean di-
ameter of the horocycle for σ(f) at fC(x) to be |dfc

dx
(x)|d, where this

definition is motivated by Lemma 4.2. Likewise, define the the evo-
lution under fC of a horocycle in U centered at infinity so that its
Euclidean height scales by the reciprocal of the derivative of fC at in-
finity. This defines a natural action of Diffn(S1) on decorations and
hence defines the desired section σ. The chain rule then shows that σ
is furthermore a group homomorphism.

This section allows us to regard

Diffn(S
1) ≈ σ(Diffn(S1)) ⊂ D̃iffn(S1) ⊂ H̃omeon(S1)

so as to calculate with lambda lengths, that is, we shall finally calculate
diffn ⊂ t̃ess using normalized trigonometric vector fields as follows.

Let w(z, t) denote the one-parameter family of diffeomorphisms of S1

that arise by integrating the normalized trigonometric fields cosnθ ∂
∂θ

and sinnθ ∂
∂θ

discussed before. In particular, we have ∂w
∂z
|t=0 = 1, an

identity we shall serially apply in the sequel. To calculate σ, define

z = C(s) =
s− i

s+ i
, for s ∈ R,

s = C−1(z) = i
1 + z

1 − z
, for z ∈ S1

∞,

so that
W (s, t) = C−1 ◦ w(C(s), t)

= i
1 + w( s−i

s+i
, t)

1 − w( s−i
s+i
, t)

: R → R

and in particular ∂W
∂s

∣∣
t=0

= 1.
By Lemma 4.2, the lambda lengths are

λ(x, y) =
|y − x|√
dx dy
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if the horocycles at x, y ∈ R have respective diameters dx, dy. By
definition of the section σ, the lambda length λ(x, y) evolves under
W (·, t) to

λW (x, y, t) =

∣∣ W (y, t)−W (x, t)
∣∣

√(∣∣∂W
∂s

∣∣
x
dx

) (∣∣∂W
∂s

∣∣
y
dy

) ,

and so we seek

∂

∂t

∣∣∣∣
t=0

{
log λW (x, y, t)

}
=

∂
∂t

∣∣
t=0

{
λW (x, y, t)

}

λW (x, y, 0)

=
∂
∂t

∣∣
t=0

{
λW (x, y, t)

}

λ(x, y)

=
1∣∣y − x

∣∣
∂

∂t

∣∣∣∣
t=0

{ ∣∣W (y, t) −W (x, t)
∣∣

√ ∣∣∂W
∂s

∣∣
x

√ ∣∣∂W
∂s

∣∣
y

}
.

Direct calculation using the identity ∂W
∂s

∣∣
t=0

= 1 gives

∂

∂t

∣∣∣∣
t=0

{
log λW (x, y, t)

}
=

[
1∣∣y − x

∣∣

∣∣∣∣
∂W

∂t

∣∣
y
− ∂W

∂t

∣∣
x

∣∣∣∣ − 1

2

{
∂2W

∂s∂t

∣∣
x

+
∂2W

∂s∂t

∣∣
y

} ]

t=0

.

We may substitute into the previous expression the known deriva-
tives

∂W

∂t
(s, t) =

2i

[1 − w( s−i
s+i
, t)]2

∂w

∂t
(
s− i

s+ i
, t),

so at t = 0, we find

∂W

∂t
(s, 0) =

2i

[1 − s−i
s+i

]2
dz

dt

∣∣∣∣
z= s−i

s+i

= − i

2
(s+ i)2 dz

dt

∣∣∣∣
z= s−i

s+i

,

where dz
dt

is the coefficient of d
dz

in the normalized trigonometric fields
described before.

In case one of the points, say the point y, lies at infinity, a parallel
calculation to that above again using Lemma 4.2 leads to

∂

∂t

∣∣∣∣
t=0

{
log λW (x,∞, t)

}
= − 1

2

{
∂2W

∂s∂t

∣∣
x

+
∂2W

∂s∂t

∣∣
∞

} ∣∣∣∣
t=0

,

which is the limit of the earlier formula for fixed x ∈ R as y → ∞.
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Theorem 8.8. For each n ∈ Z, we have the expansion

einθ ∂

∂θ
= bn0+bn+1e

iθ+bn−1e
−iθ+

i

4

∑

e∈τ∗

{
n(ξn+ηn)+

η + ξ

η − ξ
(ξn−ηn)

}
ϑe(θ),

where e ∈ τ∗ has ideal points ξ, η ∈ S1.

Proof. A series of calculations in the various cases for the residue of n
modulo four lead from the previous expression to the formulas

sin nθ
∂

∂θ
∼ 1

8

∑

e∈τ∗

(ξnηn + 1)

ξnηn

{
n(ξn + ηn) +

η + ξ

η − ξ
(ξn − ηn)

}
ϑ̄e,

cos nθ
∂

∂θ
∼ i

8

∑

e∈τ∗

(ξnηn − 1)

ξnηn

{
n(ξn + ηn) +

η + ξ

η − ξ
(ξn − ηn)

}
ϑ̄e,

which turn out to be independent of the case and combine to give the
asserted formulas for exponentials. �

Let us identify the vector field ϑ̄e = ϑ̄e(θ)
∂
∂θ

with the corresponding

function ϑ̄e(θ) of the same name. Motivated by harmonic analysis, it
is natural to try to expand a general function on the circle using these
functions. Basic questions include the convergence and uniqueness of
such expansions. Because of the supports of the functions ϑ̄, we see
that any linear combination

∑
e∈τ∗

ceϑ̄e(θ) necessarily takes well-defined

values at the points Q̄ ⊂ S1, so any expansion converges at least in
this sense. On the other hand, for any such expansion and any R-
valued function F defined on Q̄, we likewise see that the alternate
expansion

∑
e∈τ∗

(ce + F (ξ) + F (η))ϑ̄e(θ) takes the same values on Q̄,

where ξ, η ∈ S1 again denote the ideal points of e ∈ τ∗. The expansion
given in Theorem 8.8 is thus not the simplest possible; for instance, we
could simply omit the term n(ξn + ηn) without affecting the values on
Q̄. The basic estimates from [61], expressed in terms of the invariant

λA = ac + bd of a matrix A = (
a b
c d

), are that there are constants

const so that:

if ge
n is the coefficient of ϑ̄e in the expansion in Theorem 8.8 of einθ,

then we have |ge
n| < const n2 |λA|−1 and |geI

n | < |n|/2;
∑ |λA|−2 <∞, where the sum is over all A ∈ PSL2(R) − {I, S};
the L2-norm of ϑ̄A is less than const |λA|−

5

2 ;
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for every θ, we have |ϑ̄A(θ)| < const |λA|−1.

Various results about the function theory of expansions in {ϑ̄e} can be
derived from these facts.

A fundamental point is that because of the supports of the func-
tions ϑ̄e, the coefficients ce in an expansion f(θ) ∼ ∑

e∈τ∗
ce ϑ̄e(θ) can

be recursively calculated from the values of the function f(θ) at the
points Q̄ in their Farey enumeration. Furthermore, because the har-
monic expansion of the functions ϑ̄e(θ) is known from Theorem 8.7,
this provides a viable alternative method of harmonic analysis based
on this method of “Farey sampling”. For better or worse, we have ac-
tually successfully patented these methods of signal processing whose
practical application depends upon data sampled at the Farey points.
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