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INTRODUCTION

These notes grew out of a master class I gave in April 2007 at the Cen-
ter for the Topology and Quantization of Moduli spaces of the University
of Aarhus.1 The subject of the master class was the actions of (extended)
mapping class groups of surfaces on spaces of different sorts. Thes space
encode various geometric and topological objects on the surfaces, like homo-
topy classes of curves, of foliations, of conformal structures and of metrics
of constant curvature. The actions of the mapping class groups on these
spaces are all induced from the actions of homeomorphisms of the surfaces
on corresponding objects. Moreover, the spaces on which the mapping class
groups act are equipped with various structures, namely, they are groups,
simplicial complexes, analytic varieties, Finsler or Riemannian manifolds,
and the mapping class groups are embedded accordingly into groups of al-
gebraic isomorphisms, of simplicial automorphisms, of holomorphic (and
anti-holomorphic) automorphisms, and of isometries of the various metrics.
The leitmotiv in this study is that for most of these actions, the natural
homomorphism from the mapping class group of the surface in the auto-
morphism group of the given structure is an isomorphism, if one excludes
some special surfaces with small genera and small number of boundary com-
ponents. (In general the exceptional surfaces are the spheres with at most
four holes, the tori with at most two holes, and the closed surface of genus
two).
Here is a detailed list of the actions which I describe in these notes:

(1) Algebraic actions: These include the action of the mapping class
group by linear automorphisms on the first homology group of the
surface, the action of the extended mapping class group by outer
automorphisms of the fundamental group of the surface, the action of
the extended mapping class group on itself by inner automorphisms,
and the action of the extended mapping class group on the Torelli
group by conjugation.

(2) The action of the extended mapping class group by biholomorphic
and anti-biholomorphic automorphisms on the Teichmüller space of

1I would like to thank Jørgen Ellegaard Andersen who invited me to give this master
class.
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the surface, equipped with the complex analytic structure of that
space that was investigated by Ahlfors and Bers.

(3) Actions of the extended mapping class group by isometries on Te-
ichmüller space with respect to various metrics (the Teichmüller met-
ric, the Weil-Petersson metric and Thurston’s asymmetric metric.)

(4) Actions of the extended mapping class group by simplicial automor-
phisms on various abstract simplicial complexes associated to the
surface (the curve complex, the pants decomposition complex, the
complex of nonseparating curves, the complex of domains, etc.).

(5) The actions of the extended mapping class group on the Hatcher-
Thurston and on the pants 2-dimensional cell complexes.

(6) The actions of the extended mapping class group by piecewise linear
automorphisms of measured foliations space, equipped with the train
track piecewise linear structure introduced by Thurston.

(7) The action of the extended mapping class group by homeomorphisms
on the space of equivalence classes of measured foliations equipped
with the set of intersection functions, and preserving this set.

(8) The action of the extended mapping class group by homeomorphisms
of the non-Hausdorff space of unmeasured foliations.

There are other actions of the (extended) mapping class group which are
certainly worth studying and which I do not mention in these notes, ex-
cept sometimes for stating an open problem. Examples of such actions
include the action by isometries on metrics other than the Teichmüller and
the Weil-Petersson (e.g. McMullen’s metric, the Kähler-Einstein metric,
etc.), the algebraic action by conjugation on other normal subgroups than
the Torelli group, the action on the character variety of representations of
the fundamental group of the surface in SL(2, C) and in other Lie groups
that preserve the trace functions, the action by symplectomorphisms of Te-
ichmüller space with respect to the Weil-Petersson symplectic structure, the
action by homeomorphisms of Teichmüller space that preserve the set of hy-
perbolic length functions, the actions on boundaries other than Thurston’s
boundary (for instance, the action on the Gromov boundary of the complex
of curves), and the actions on quantum Teichmüller and measured foliation
spaces. One could also study actions analogous to those that are presented
here for surfaces that are not of finit type, see e.g. the results obtained by
Markovic for the isometries of the Teichmüller metrics of such surfaces, cf.
[42] and the survey in [18]. There are also actions analogous to those of the
mapping class group on the soleniod, see e.g. the work by Bonnot, Penner
& Šarić [6] and the survery by Šarić [65], and the list could go on and on.
Each of the actions that I mention in these notes has a particular geometric
flavour, and as I already mentioned, a constant feature of these actions is
that, in most cases, the representation of the (extended) mapping class group
in the automorphism group of the structure is faithful, that is, the mapping
class group injects into the automorphism group, except, as we already said,



4 A. PAPADOPOULOS

for a small finite set of surfaces (notably, the case of the closed surface of
genus two or the torus with one or two holes, or the sphere with four holes,
where the hyperelliptic involutions are in the kernel of the representation),
cf. Figure 1. More interestingly, there are quite a number of cases where the
representation is also surjective, that is, where every automorphism of the
structure is induced by an element of the extended mapping class group.

Figure 1. The hyperelliptic involution of the closed surface
of genus two can be seen as the 180-degree rotation about
the horizontal axis.

We call an automorphism of a given structure geometric if it is induced by an
element of the extended mapping class group. We shall say that the action
is rigid if the associated automorphism group coincides with the (extended)
mapping class group. This is the feature which is highlighted in these notes.
As was already mentioned, in general, in order for the action of the mapping
class group to be rigid, one has to exclude some special surfaces, and for the
majority of the actions that are considered here, the excluded surfaces are
surfaces with low genus and with a small number of boundary components.
But there are also actions for which one has to exclude a large family of
surfaces. For instance, the action of the extended mapping class group as
outer automorphisms of the fundamental group is rigid if and only if the
surface has no boundary. Another example that we shall study and which
has a different character is the case of the action of the extended mapping
class group by simplicial automorphisms on the complex of domains. In that
case, the action is rigid if and only if the surface has at most one boundary
component.
In any case, it is a natural and interesting question to find exactly for which
surfaces the automorphism group of the structure under consideration is nat-
urally identified with the extended mapping class group. Moreover, for the
excluded surfaces have low genus and a small number of boundary compo-
nents, it is generally possible and instructive to obtain a complete geometric
picture of the structure, to describe its full automorphism group and to see
exactly to what extent this group fails to be equal to the natural image of
the extended mapping class group in that group.
In these notes, I describe in detail the following actions:

• the simplicial action on the complex domain, which is recent joint
work with John McCarthy;
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• the piecewise linear action on the train track piecewise-linear struc-
ture on the space of equivalence classes of measured foliations;

• the action by homeomorphisms on the non-Hausdorff space of un-
measured foliations.

Concerning the other actions, I state the corresponding rigidity and/or non-
rigidity results, after a review of the definitions and of some background
material that is needed to understand them, together with a discusssion of
the special cases, but with a minimum amount of technicalities.
I start with a few definitions which will be useful throughout these notes.
We shall always denote by S = Sg,n a connected oriented compact surface
of genus g ≥ 0 with n ≥ 0 boundary components. In the case where S is
closed (that is, if b = 0), we shall also write S = Sg.
Let Homeo(S) be the set of all homeomorphisms of S, equipped with the
group structure defined by composition of maps.
We need to consider a topology on the group Homeo(S), because we want to
talk about homotopies in that space. We equip Homeo(S) with the topology
of uniform convergence. (We shall equip Homeo(S) with the compact open
topology in later sections where we consider surfaces with a finite number
of points deleted instead of compact surfaces with boundary.)
If f and g are two elements of Homeo(S), then, we shall call an isotopy
from f to g a continuous map H : [0, 1] → Homeo(S) satisfying H0 = f and
H1 = g.
Let Homeo0(S) be the group of homeomorphisms of S that are isotopic to
the identity. In other words, Homeo0(S) is the connected component of the
identity in the group Homeo(S).
Finally, let Homeo+(S) be the space of homeomorphisms of S that pre-
serve the orientation of S, and Homeo+

0 (S) be the intersection Homeo0(S)∩
Homeo+(S).
The subgroups Homeo0(S) and Homeo+

0 (S) are normal subgroups of Homeo(S)
and Homeo+(S) respectively.
The extended mapping class group of S, denoted by Γ∗, Γ∗

g,n or Γ∗(S), is the
quotient group

Γ∗(S) = Homeo(S)/Homeo0(S).
The mapping class group of S, denoted by Γ, Γg,n or, Γ(S), is the quotient
group

Γ(S) = Homeo+(S)/Homeo+
0 (S).

In other words, the extended mapping class group of S is the set of isotopy
classes of homeomorphisms of S, and the mapping class group of S is the set
of isotopy classes of orientation-preserving homeomorphisms of S. The two
sets are equipped with the group operation that is induced by composition
of maps.
Elements of the (extended) mapping class group are called (extended) map-
ping classes.
Note that Γ(S) is a normal subgroup of index 2 in Γ∗(S).
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Any homeomorphism of S preserves the boundary components of S. Note
that we do not ask that it preserves each boundary component. I mention
here this fact because in the literature on mapping class groups, some au-
thors deal with homeomorphisms that preserve each boundary component,
and even, in some contexts, the authors ask that the homeomorphisms in-
duce the indentity map on each boundary component. For instance, this is
the case when one is interested in homomorphisms between mapping class
groups of sequences of nested surfaces. Groups of mapping classes that
preserve setwise each boundary components are normal subgroups of Γ(S)
and Γ∗(S). We note in this respect that in his paper The group of map-
ping classes [8], in which Max Dehn describes a finite set of generators for
mapping class groups consisting of (what we call now) Dehn twists, Dehn
discusses various possibilities for the homeomorphisms and the homotopies
defining the mapping class groups in the case of surfaces with boundary:
possibly exchaging the boundary components, or fixing setwise each bound-
ary component, or fixing pointwise the points on the boundary and so on
(cf. [8] p. 256 ff.).
We also note that in the definition of the (extended) mapping class group,
one can use diffeomorphisms instead of homeomorphisms. This requires tak-
ing an arbitrary differentiable structure on the surface, and noting that the
group obtained does not depend on the choice of the differentiable struc-
ture. Therefore this group is canonically isomorphic to the one defined
by using homeomorphisms. Using diffeomorphisms instead of homeomor-
phisms can seem somehow artificial, because the differentiable structure
is generally not useful in the theory (except for instance when one deals
with conformal structure on S, but in this case the differentiable structure
comes as a by-product of the conformal structure). But a differentiable
structure can sometimes have advantages; for instance, it is easier to talk
about an orientation-preserving diffeomorphisms rather than an orientation-
preserving homeomorphisms. (Note that one can define a homeomorphism
to be “orientation-preserving” if it is isotopic to a diffeomorphism that is
orientation-preserving.) The mapping class group is sometimes called the
diffeotopy group. (This is also the french terminology.)
There are some surfaces of small genus and with a small number of bound-
ary components, of which the (extended) mapping class groups have easy
decriptions. Let us mention the following cases:
1) The mapping class group of the sphere S2 = S0,0 is trivial. This is a conse-
quence of a theorem of Smale saying that the group of orientation-preserving
diffeomorphisms Diffeo(S2) of the two-sphere is homotopy-equivalent to its
subgroup O(3) of rotations, and therefore, Diffeo(S2) is connected. The ex-
tended mapping class group of the sphere is Z2, generated by the isotopy
class of any orientation-reversing homeomorphism.
2) We have Γ(S0,1) = {Id}, Γ∗(S0,1) $ Z2, Γ(S0,2) = Z2 and Γ∗(S0,2) =
Z2 ⊕ Z2. Note that in the case of the disk S0,1, there exists a homotopy of
maps of the disk which reverses the orientation of the surface, but this is
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not an isotopy in the sense we are using this word here. (Remember that an
isotopy is a continuous path of homeomorphisms, and each homeomorphism
preserves the boundary of the surface). Likewise, in the case of the annulus,
there exists a homotopy (but not an isotopy) between the identity map and
a homeomorphism which interchanges the two boundary components and
reverses the orientation, but again, this is not an isotopy. In any case, the
disk and the annulus are the only two surfaces where such phenomena can
happen.
3) If S = S0,3 (a pair of pants), then Γ(S) is the permutation group on
three elements (the three boundary components), and Γ∗(S) is a degree-two
extension of Γ(S) by any orientation-reversing homeomorphims of S.
4) If S = S1 (the torus) or S = S1,1 (the torus with one hole), the mapping
class group Γ(S) is infinite, and it is generated by the two Dehn twists
represented respectively in the two pictures on the right in Figure 2. We
have isomorphisms Γ(S1,0) $ Γ(S1,1) $ SL(2, Z) and Γ∗(S1,0) $ Γ∗(S1,1) $
GL(2, Z). Again, the extended mapping class group is obtained by taking an
extension of the mapping class group by the isotopy class of any orientation-
preserving homeomorphism.
5) In the case where S = S0,4, then Γ(S) is an infinite group generated by
the Dehn twists around the two curves represented in the picture to the left
in Figure 2 and Γ∗(S) is an extension of Γ(S) by any orientation-reversing
mapping class. These groups are finite extensions of the mapping class group
and (respectively) the extended mapping class group of the torus.

Figure 2. For each of the surfaces represented, the mapping
class group is generated by Dehn twists around the two curves
drawn on them.

We finally note that in the case of surfaces of genus 0, mapping class groups
have several special algebraic descriptions as they essentially coincide with
braid groups.

Part 1. ALGEBRAIC ACTIONS

1. Automorphisms of homology

In this section, S is a closed surface. We study the classical and well under-
stood action of the mapping class group of S on the first singular homology
group of S.(For reasons that are apparent in the analysis of the action, it is
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natural to deal here with the mapping class group and not with the extended
mapping class group.) This action has a different character from the other
actions that we consider in the sequel, in that it is not faithful, except in the
case where S is the torus, or in trivial case where S and is the two-sphere.
Let H1(S, R) be the first singular homology space of S with real coefficients.
This is a real vector space of dimension 2g. Let us fix a set of generators
of H1(S, R) consisting of 2g cycles represented by oriented simple closed
curves C1, . . . , Cg and D1, . . . ,Dg whose union is topologically conjugate to
the system of curves represented in Figure 3.

C1 C2 C3

D1 D2 D3

Figure 3. The curves shown in this picture, together with
an orientation on each of them, form a basis of the real ho-
mology vector space of the surface.

If C and C ′ are oriented simple closed curves on S, then the algebraic in-
tersection 〈C,C ′〉 is defined as the sum over the intersection points C ∩ C ′

of the signs at these points, the sign at an intersection point being +1 if
the orientation on C followed by the orientation on C ′ coincides with the
orientation of the surface, and to −1 otherwise.
The algebraic intersection function 〈C,C ′〉 between oriented curves extends
linearly to an algebraic intersection form H1(S, R) × H1(S, R) → R which
is skew-symmetric and non-degenerate, and which is therefore a symplectic
form.
The algebraic intersection on pairs of curves in our system of generators
satisfies the following:

(1) 〈Ci, Cj〉 = 0 for all i and j;
(2) 〈Di,Dj〉 = 0 for all i and j;
(3) 〈Ci,Di〉 = 0 for all i;
(4) 〈Ci,Dj〉 = 0 for all i *= j.

Properties (1) to (4) express the fact that our basis is a symplectic basis.
There is a natural linear action of the mapping class group Γ(S) on the vector
space H1(S, R), induced from the action of homeomorphisms on singular
cycles. This action produces a homomorphism from the mapping class group
Γ(S) to the group of linear automorphisms of the vector space H1(S, R).
A linear automorphism of H1(S, R) which is the image of a mapping class
has two general features. First, it preserves the integer lattice H1(S, Z),
that is, the subset of the vector space H1(S, R) consisting of the elements
that can be written as linear combinations with integral coefficients of our
generators, that is, as

∑g
i=1 piCi + qiDi with pi and qi in Z. Indeed, such
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elements in H1(S, R) are the singular cycles that can be represented by (not
necessarily connected) oriented simple closed curves on S, and a homeo-
morphism of S sends an oriented simple closed curve to an oriented simple
closed curve. Second, the action of an element of the mapping class group on
H1(S, R) preserves the symplectic pairing, because an orientation-preserving
homeomorphism of the surface preserves the algebraic intersection number
of oriented simple closed curves. In other words, with the choice of basis
that we made for H1(S, R), the elements of the mapping class group act as
symplectic automorphisms on the lattice H1(S, Z). Thus, the image of Γ(S)
in the linear automorphisms group of H1(S, R) is contained in the group
Sp(2g, R) of symplectic automorphisms of that space and, more precisely,
the image is contained in the subgroup Sp(2g, Z), whose elements are called
unimodular symplectic automorphisms. Sp(2g, Z) is a discrete subgroup of
Sp(2g, R). Thus, we have a natural homomorphism Γ(S) → Sp(2g, Z).
The following is a classical result, attributed to Burckhardt, Dehn and
Nielsen.

Theorem 1.1. For any closed surface S, the natural homomorphism

Γ(S) → Sp(2g, Z)

is surjective.

It is easy to see that this homomorphism is not injective. For instance,
a Dehn twist around a separating nontrivial simple closed curve defines a
nontrivial mapping class which induces the identity automorphism on the
first homology. The kernel of the homomorphism Γ(S) → Sp(2g, Z is the
so-called Torelli group, which we shall denote by Tor(S). There has been
a lot of activity on the Torelli group since the 1970s, and despite this fact
this groups is still poorly understood. For instance, it is unknown whether
it is finitely presented, for any g ≥ 3. D. Johnson proved in [34] that the
Torelli group is finitely generated for all g ≥ 3 and G. Mess proved in [51]
that for g = 2, the Torelli group is a nonabelian free group of infinite rank
and therefore is not finitely generated. Note that in the case of genus 1, the
Torelli group is the trivial group.

2. Outer automorphisms of the fundamental group

Let G be a group and let Aut(G) be its automorphism group. Then, G acts
on itself by inner automorphisms, and the image of G in Aut(G) is called
the the group of inner automorphisms of G and is denoted by Inn(G). The
group Inn(G) is a normal subgroup of Aut(G). The outer automorphism
group of G is the quotient group

Out(G) = Aut(G)/Inn(G).

The study of outer automorphisms of the fundamental group of a surface
was carried on by Dehn and Nielsen in the first quarter of the 20th century.
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An element of Γ∗(S) induces an automorphism of the fundamental group
π1(S) which is only defined up to composition with an inner automorphism
of π1(S). The ambiguity here has to do with the choice of a basepoint for
the definition of π1(S) and with the fact that a homeomorphism of S does
not necessarily preserve the basepoint. More precisely, if x is a basepoint
of S, then, a continuous map f : S → S gives rise to a homomorphism
f! : π1(S, x) → π1(S, f(x)) (and not from π1(S, x) to itself). By composing
f with a homeomorphism of S which is isotopic to the identity and which
sends f(x) to x, we get a homeomorphism which is isotopic to f and which
sends x to itself, and which therefore defines a homomorphism of π1(S, x),
but due to these choices this homomorphism is not canonical. Still, any
element of Γ∗(S) gives a well defined element of the outer automorphism
group Out(π1(S)). In fact, one gets a natural homomorphism Γ∗(S) →
Out(π1(S)), and we have the following:
Theorem 2.1 (Dehn-Nielsen, Baer). For any closed surface S of genus ≥ 1,
the natural homomorphism

Γ∗(S) → Out(π1(S))

is an isomorphism.
The theorem was stated by Dehn, but it is generally considered that there
were gaps in the first proof that Dehn gave.2 Nielsen later on wrote a proof
of the surjectivity [53], which he attributed to Dehn, and Baer wrote a proof
of the injectivity [2].
Let us note that the proofs that Dehn and Nielsen gave of this result use
hyperbolic geometry, namely, the action of mapping classes on the geodesic
representatives of the elements of the fundamental group, after the surface
has been equipped with a hyperbolic structure.
Note that in the case of genus 0, the theorem is false, because the ex-
tended mapping class group of the sphere is Z2 (generated by the class of
any orientation-reversing involution) whereas the fundamental group of the
sphere is trivial.
At the level of the mapping class group, we have an isomorphism

Γ(S) → Out+(π1(S))

where Out+(π1(S)) is the subgroup of “orientation preserving outer auto-
morphisms”, a notion that is defined using group cohomology.3 We note
that one can also define orientation preserving automorphisms of the fun-
damental group by looking at the sign of the determinant of the induced
action on the first homology group, after the choice of a basis.
In relation to the outer automorphism group of π1(S), let us note the fol-
lowing relatively recent “non-realization” result by Ivanov and McCarthy:

2It seems that Dehn wrote other proofs of that theorem, but these proofs are lost, see
the commentary by John Stillwell in [8] p. 363.

3Out+(π1(S)) can be defined as the subgroup of Out(π1(S)) consisting of elements that
act trivially on H2(π1(S), Z), see for instance the exposition in [52]).
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Theorem 2.2. For any closed surface S, there is no injective homomor-
phism Out(π1(S)) → Aut(π1(S)). In particular, the natural quotient homo-
morphism Aut(π1(S)) → Out(π1(S)) is not split.

Ivanov and McCarthy deduce this theorem from the main result of their pa-
per [33], which concerns injective homomorphisms between extended map-
ping class groups, and which we shall further refer to below (see Theorem
3.5).

Example 2.3. We consider the special case where S = S1 is the torus. In
this case, π1(S) is the abelian group Z ⊕ Z, and its inner automorphism
group is trivial. Thus, Out(π1(S)) $ Aut(π1(S)) = Aut(Z ⊕ Z) which is
isomorphic to the group of matrices

GL(2, Z) =
{(

a b
c d

)
| a, b, c, d ∈ Z, ad − bc = ±1

}
.

With the identification S1 = R2/Z2, the surjectivity of the homomorphism
Γ∗(S1) → Out(π1(S1)) follows from the fact that any element of SL(2, Z)
defines a linear map of the plane R2 which preserves the lattice Z2 ⊂ R2

and descends to a linear map of the quotient R2/Z2.
A matrix in GL(2, Z) represents a homeomorphism of the torus that pre-
serves the orientation if and only if its determinant is 1, that is, if this matrix
is in the special linear group SL(2, Z).
In particular, Γ∗(S1) $ GL(2, Z) and Γ(S1) $ SL(2, Z).

Remark 2.4. If S is not a closed surface, then the homomorphism Γ∗(S) →
Out(π1(S)) is not an isomorphism, unless S is a disk or an annulus. If S
is not a disk or an annulus, the homomorphism is still injective, and the
image of Γ∗(S) in Out(π1(S)) is the subgroup consisting of elements which
“preserve the peripheral structure of the surface”, i.e. which preserve the
collection of conjugacy classes of simple closed curves that are homotopic
to the punctures. This result is due to Zieschang (injectivity) and to Mag-
nus (surjectivity onto the subgroup consisting of elements that preserve the
peripheral structure), see [72].
In the case of surfaces with boundary, the statement of the realization theo-
rem of the extended mapping class group as a group of outer automorphisms
is not as satisfying as in the case of closed surfaces, because the notion of
“preserving the peripheral structure” is not an instrinsic notion of the funda-
mental group (which in the case of a surface with boundary is a free group),
but depends on the realization of that group as the fundamental group of
the surface with boundary. Note however that there are group-theoretic
formulations of the notion of preserving the peripheral structure, which are
done in the setting of a generalization of the Dehn-Nielsen Theorem in the
theory of Fuchsian groups. In this setting, one asks that parabolic elements
of the Funchsian group are sent to parabolic elements. We refer the reader
to [41].
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3. Automorphisms of mapping class groups

As it is the case of any group, the group Γ∗(S) acts on itself by conjugation.
In [29], N. Ivanov announced the following result:

Theorem 3.1. Let S = Sg be a closed surface of genus g ≥ 3. Then, the
natural homomorphism

Γ∗(S) → Aut(Γ∗(S))

in which Γ∗ acts on itself by inner automorphisms is an isomorphism.

The result says in particular that for g ≥ 3, any automorphism of Γ∗(Sg) is
inner. Equivalently, the outer automorphism group of Γ∗(Sg) is trivial.
We note that this result fails in the case of a closed surface genus 2 (see
below).
The following theorem is proved in the paper [48] by J. McCarthy, which also
contains a precise description of the groups Out(Γ(Sg)) and Out(Γ∗(Sg)) for
all g ≥ 2.

Theorem 3.2. Let S = Sg be a closed surface of genus g ≥ 2. Then,
(1) Out(Γ∗(S2)) $ Out(Γ(S2)) $ Z2 ⊕ Z2;
(2) for g ≥ 3, Out(Γ(Sg)) = Z2 and Out(Γ∗(Sg)) = {1}.

This theorem (without the distinction between genus 2 and genus ≥ 3) was
conjectured in 1983 by V. Turaev, cf. [30] p. 201.
Note that since Γ(S) is a normal subgroup of Γ∗(S) and that Inn(Γ∗(S))
restricts to a subgroup of Aut(Γ(S)).

Remark 3.3. The case of the closed surface of genus two, as analyzed by
McCarthy, involves the so-called exceptional automorphism τ : Γ(S) → Γ(S)
which is an automorphism that maps a Dehn twist along a non-separating
curve on S to its product with the unique nontrivial element of the center
of Γ(S). McCarthy proved that every automorphism of Γ(S2) is the re-
striction of an inner automorphism of Γ∗(S2) or the composition of such an
automorphism with τ (which gives in particular Out(Γ(S2)) $ Z2 × Z2).

McCarthy’s proof of Theorem 3.2 is based on an analysis of the action of
an automorphism of the extended mapping class group on the collection of
abelian subgroups of that group. It uses the fact that an automorphism
of the extended mapping class group must preserve an invariant of abelian
subgroups, called stable rank. We note by the way that geometric invariants
of abelian subgroups of mapping class groups have been studied by Birman,
Lubotzky and McCarthy in [5], and that this work is based on Thurston’s
classification theorem of mapping classes [69].
Ivanov gave later on a general version of the rigidity result which is valid in
the case of surfaces with boundary. In [30], he proved the following

Theorem 3.4. If S is not a sphere with at most four holes or a torus with
at most two holes or a closed surface of genus two, then, any automorphism
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of Γ(S) is the restriction of an inner automorphism of Γ∗(S). Furthermore,
we have Out(Γ(S)) = Z2 ⊕ Z2 and Out(Γ∗(S)) = {1}.

Ivanov’s proof is based on a clever algebraic characterization of Dehn twists
in the mapping class group, showing that any automorphism of the extended
mapping class group sends a Dehn twist to a Dehn twist, and moreover, pre-
serving some geometric relations between Dehn twists (for instance, com-
muting twists are sent to commuting twists). Such automorphisms are then
shown to be induced by homeomorphisms of the surface.
We note that Theorem 3.1 was already known in the case of braid groups,
that is, mapping class groups of spheres with holes. The result is due to
Dyer and Grossmann [9].
We also note that another proof of Theorem 3.1 was given by R. Tchangang
in [64]. This proof is based on the analysis of the action of an automorphism
of Γ∗(S) on finite order elements of that group, and it uses the result of Dyer
and Grossmann for braid groups that we stated above.
Finally, we note that Ivanov and McCarthy later on improved these results,
in a study of injective homomorphisms of mapping class groups. They prove
in [33] the following strong rigidity result:

Theorem 3.5. Let S = Sg,n and S′ = Sg′,n′ be two surfaces, such that g ≥ 2
and (g′, n′) *= (2, 0), such that the values 3g−3+n and 3g′−3+n′ differ by
at most one. Then, any injective homomorphism Γ(S) → Γ(S′) is an inner
automorphism.

The quantity 3g − 3 + n that appears in the statement of Theorem 3.5 is
used in the paper [33] as being the maximal rank of an abelian subgroup of
the mapping class group Γ(Sg,n), which is also the maximal cardinality of
a set of disjoint and pairwise non-homotopic simple closed curves on Sg,n

which are not homotopic to a point or to a boundary component.

4. Automorphisms of the Torelli group

In this section, S = Sg is a closed surface of genus g.
Recall from Section 1 that the Torelli group Tor = Tor(S) is the kernel of
the natural homomorphism Γ(Sg) → Sp(2g, Z), arising from the action of
homeomorphisms of S on homology.
The extended mapping class group Γ∗(S) acts on the Torelli group by
conjugation: if γ is an extended mapping class and η an element of the
Torelli group, then the extended mapping class γηγ−1 is an element of the
Torelli group. (That γηγ−1 ∈ Tor(S) for γ in Γ(S) is just the fact that
Tor(S) is a normal subgroup of Γ(S).) This action defines a homomorphism
Γ∗(S) → Aut(Tor(S)).
The following theorem was proved by Farb and Ivanov for g ≥ 5 [15]. Mc-
Carthy and Vautaw gave a proof which is valid for all g ≥ 3 [50].
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Theorem 4.1 (Farb-Ivanov, McCarthy-Vautaw). Let S be a closed surface
of genus g ≥ 3. Then, the homomorphism

Γ∗(S) → Aut(Tor(S))

defined by the action of Γ∗(S) on Tor(S) by conjugation is an isomorphism.

Note that this result is false for g = 2, since by a result of Mess, Tor(S2) is
a free abelian group on an infinite set of generators (see [51]). For g ≤ 1,
the Torelli group is the trivial group, so the theorem in that case does not
have content.
The proof of Theorem 4.1 that McCathy and Vautaw gave involves the action
of the automorphisms of Tor(S) on the curve complex C(S) described in
Section 6 below. It uses the fact that any automorphism of C(S) is induced
by an element of the extended mapping class group (Theorem 6.3 below).
Note that Theorem 4.1 does not imply that the outer automorphism group
of the Torelli group of a closed surface of genus g ≥ 3 is trivial, since con-
jugation in that group by an element of the extended mapping class group
is not an inner automorphism. Rather, the theorem implies that the outer
automorphism group of the Torelli group is a degree-two extension of the
integral symplectic group Sp(2g, Z).

Part 2. ACTIONS ON SIMPLICIAL COMPLEXES AND
OTHER CELL COMPLEXES

In this part, we shall consider actions of the extended mapping class group
on several simplicial complexes. We note right away that there are actions of
the extended mapping class group onother simplicial complexes which have
been studied by various authors and which I do not mention here.
We start with a short survey on abstract simplicial complexes.

5. Abstract simplicial complexes

In this section, we review some notions related to abstract simplicial com-
plexes which we shall use in the rest of this part. Of course, a reader familiar
with the bases of abstract simplicial complexes can skip this section. More
material on this subject is contained in [49].

Definition 5.1 (Simplicial complex). An abstract simplicial complex K with
vertex set V is a (finite or infinite) set V equipped with the structure defined
by a collection of finite subsets of V such that

(1) x ∈ V implies {x} ∈ K;
(2) σ ∈ K and τ ⊂ σ implies τ ∈ K.

In what follows, all simplicial complexes will be abstract, and therefore we
shall omit this adjective.
The elements of the set V are called the vertices of K.
We shall sometimes talk about the simplicial complex V (with its structure
of subsets being understood), instead of the simplicial complex K.
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A finite subset of V belonging to this structure is called a simplex of the
simplicial complex. The dimension of a simplex σ is equal to Card(σ)−1. A
simplex of dimension k is called a k-simplex. In particular, the 0-simplices
of K are the vertices of K. A simplex of dimension 1 is called an edge.
The dimension of the simplicial complex K, dim(K) ∈ N∪ {∞}, is equal to
the maximal dimension of a simplex in K.

Example 5.2. If V is an arbitrary set (finite, infinite, countable or un-
countable), then the set of all finite subsets of V has a natural structure of
a simplicial complex.

A simplicial complex is said to be locally finite if every vertex belongs to
only finitely many simplices.
An abstract simplicial complex K is said to be connected if we can join any
two vertices by a sequence of consecutive edges, i.e. if for any vertices v and
w of K, there exists a sequence of edges {v0, v1}, {v1, v2}, . . . , {vn−1, vn},
with v0 = v and vn = w.

Definition 5.3. A subcomplex of a simplicial complex K is a simplicial
complex H whose vertex set is contained in the vertex set of K and such
that any simplex of H is a simplex of K.

Note that there could be simplices of K which are not simplices of H even
though they have all their vertices in H.

Example 5.4. 1) Let K be a simplicial complex and let σ be a simplex of
K. Then, the set of all subsets of σ has a natural structure of a simplicial
complex whose vertex set is the set of vertices of σ, and it is a subcomplex
of K.
2) Let K be a simplicial complex. For each n ≥ 0, the n-skeleton Kn of
K is the set of all k-simplices of K with k ≤ n. This set has a natural
structure of a simplicial complex, with the same vertex set than K, and it
is a subcomplex of K.

Definition 5.5 (Flag complex). A simplicial complex K is called a flag
complex if for every set {x0, . . . , xn} of vertices of K such that for all i and
j satisfying 0 ≤ i < j ≤ n, {xi, xj} is an edge of K, the set {x0, . . . , xn} is
a simplex of K.

Thus, as a simplicial complex, a flag complex is completely determined by its
one-skeleton. Note however that despite this fact, there are important issues
concerning flag complexes that do not only depend on the one-skeleton. For
instance the automorphism group of a flag complex is generally not equal
to that of its one-dimensional skeleton.

Definition 5.6. Let K be a simplicial complex with vertex set V and let K ′

a simplicial complex with vertex set V ′. A simplicial map from K to K ′ is a
map f0 : V → V ′ whose induced action on subsets, denoted by f : K → K ′,
takes a simplex of K to a simplex of K ′. The map f0 is then the induced
map from the simplicial map f : K → K on the set of vertices of K and K ′.
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If we denote our two simplicial complexes by V and V ′ (with the structures
K and K ′ of subsets being understood), then a simplicial map between these
complexes can also be denoted by f : V → V ′, but one has to be careful on
the fact that this map does not only denote the induced map on vertices.
If the simplicial map f : K → K is bijective, then f is said to be a simplicial
isomorphism. (In particular, the induced map on the vertices, f0 : V → V ′,
must be bijective.)

Example 5.7. If V and V ′ are two sets and if K and K ′ are the simplicial
complexes whose simplices are the sets of all finite subsets of V and V ′

respectively, then, any map f0 : V → V ′ between the sets of vertices of K
and K ′ induces a simplicial map f : K → K ′. If f0 is a bijection, then f is
an isomorphism.

If f : K → K ′ is a simplicial map which is injective, then we can identify K
with a subset H of K ′. This subset H inherits the structure of a simplicial
complex, by pushing forward the structure of the simplicial complex K.
Note that H is a subcomplex of K ′.
If f : K → K ′ is a simplicial map from a simplicial complex K to a simplicial
complex K ′, and if g : K ′ → K” is a simplicial map from the simplicial
complex K ′ to a simplicial complex K ′′, then g ◦ f is a simplicial map from
the simplicial complex K to the simplicial complex K ′′.

Definition 5.8 (the star of a vertex of a simplicial complex). Let x be a
vertex of a simplicial complex K. The star of x in K is the subcomplex
St(x,K) of K whose simplices are the simplices of K which contain the
vertex x together with all the faces of such simplices of K.

Let K be a simplicial complex and x be a vertex of K. Note that the 0-
skeleton St0(x,K) of St(x,K) is the set of all vertices w of K such that
{x,w} is a simplex of K.
The following proposition is useful in the study of flag complexes:

Proposition 5.9. Let K be a flag complex. Let x and y be vertices of K.
Then the following are equivalent:

(1) St(x,K) = St(y,K).
(2) St0(x,K) = St0(y,K).

Definition 5.10 (The link of a vertex of a simplicial complex). Let x be
a vertex of a simplicial complex K. The link of x in K is the subcomplex
Lk(x,K) of K whose simplices are the simplices of St(x,K) which do not
have x as a vertex.

We end this section by recalling the following notion that we shall use in
later sections.

Definition 5.11 (Induced subcomplex). Let K be a simplicial complex with
vertex set V and W be a subset of V . Let KW be the set of all simplices
of K which have all their vertices in W . Then KW is a subcomplex of K
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with vertex set W , which is called the subcomplex of K induced by the subset
W ⊂ V .

6. Automorphisms of the curve complex

We consider again a surface S = Sg,n of genus g ≥ 0 and with b ≥ 0
boundary components.
A curve on S is a connected one-dimensional submanifold in the interior of
S. A curve is said to be essential if it is not homotopic to a point or to a
boundary component of S. For instance, there are no essential curves on a
sphere with at most three holes.

Definition 6.1. The curve complex C(S) is the flag simplicial complex
whose k-simplices, for all k ≥ 0, are the sets whose elements are k + 1 iso-
topy classes of essential pairwise non-isotopic and pairwise disjoint essential
curves.

The curve complex was introduced by Harvey in 1978, with the idea that this
complex encodes some boundary structure of Teichmüller space, in analogy
to Tits buildings which encode a boundary structure of symmetric spaces.
This complex turned out to be an extremely interesting object, and it has
been studied for itself by Ivanov, Masur, Minsky, Hammenstaedt, Bowditch
and others.
The extended mapping class group acts simplicially on C(S) in the following
natural manner: if γ ∈ Γ∗(S) is the class of a homemorphism f of S, and
if σ is a simplex of C(S), which is represented by a collection of curves
C1, . . . , Ck, then γ(σ) is the simplex represented by the collection of curves
f(C1), . . . , f(Ck).
Note that a finite collection of vertices of C(S) forms a simplex of C(S)
if and only if each pair of vertices in this collection can be represented by
disjoint curves on S. Then, C(S) is a flag complex.
The complex C(S) is empty when S is a sphere with at most three holes,
and C(S) is an infinite set of vertices when S is a sphere with four holes or
a torus with at most one hole.
If S is not a sphere with at most four holes or a torus with at most one hole,
then C(S) is connected. This result was stated by Harvey in [21]. Proofs
were given by Harer in [20] and by Masur and Minsky in [46]. The proof
that Masur and Minsky gave in [46] (Lemma 2.1) uses induction on the
number of intersection points between curves. In fact, Masur and Minsky
gave an upper bound of the distance between two vertices in terms of the
intersection number of the curves that represent these vertices. Ivanov gave
in [32] another proof of the same fact that uses Cerf theory.
The complex C(S) is always finite-dimensional. Indeed, there is an upper
bound for the number of pairwise disjoint and non-isotopic essential curves
on S. The least such upper bound is 3g−3+n (which is equal to the number
of essential curves in a pants decomposition of S). Therefore, the dimension
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of C(S) is equal to 3g − 4 + n. Note that this dimension is ≥ 1 provided S
is not a sphere with at most four holes and a torus with at most one hole.
The complex C(S) is not locally finite, provided it is connected. The reason
is that as soon as a surface contains an essential curve, it contains infinitely
many such curves. Thus, if α is an essential curve on S and if C(S) is
connected, then there are infinitely many distinct essential curves on the
surface S obtained from S by cutting it along α, and therefore the vertex
representing α in C(S) belongs to infinitely many edges.
Although we did not define the geometric realization of a simplicial complex,
we note the following result of J. Harer: the geometric realization of C(S)
is (2g +n−4) connected if n > 0 and (2g−3) connected if n = 0 (cf. [20] p.
217). Hare proved also that in the case where S is not a closed surface, the
geometric realization of C(S) is homotopy equivalent to a wedge of spheres
of dimension 2g − 3 + n.
The extended mapping class group Γ∗(S) acts naturally on C(S), and we
thus obtain a natural homomorphism Γ∗(S) into the group Aut(C(S) of
simplicial automorphisms of C(S).
The basic result on the automorphism group of C(S) is due to N. Ivanov,
who proved the following (see [30]):

Theorem 6.2. For g ≥ 2, the natural homomorphism

Γ∗(S) → Aut(C(S)

is an isomorphism provided S is not the closed surface of genus 2. If S is
the closed surface of genus 2, then the homomorphism is surjective and its
kernel is Z2, generated by the hyperelliptic involution.

Korkmaz continued the analysis made by Ivanov and he studied the case
of surfaces of genus 0 and 1. He proved in [36] that for such surfaces, any
automorphism of C(S) is induced by an element of Γ∗(S) if S is not a sphere
with ≤ 4 holes or a torus with ≤ 2 holes.
In the cases where S = S1,1 and S0,4, there are automorphisms of C(S) that
are not geometric since in each of these cases the complex of curves is an
infinite countable set of vertices, and therefore its automorphism group is
uncountable.
Luo in [39] analyzed a delicate remaining case, which is the case where
the surface S is a torus with two holes. He proved that in that case the
map Γ∗(S) → Aut(C(S) is not surjective. More precisely, Luo noticed that
there is an isomorphism C(S1,2) → C(S0,5). This isomorphism is induced
by the projection map π : S1,2 → S1,2/ι, where ι is the hyperelliptic in-
volution of S1,2, and where S0,5 is identified with the complement of the
singular locus of π in S1,2/ι. Thus, the automorphism group of C(S1,2) is
isomorphic to the automorphism group of C(S0,5). Now it is known that
the extended mapping class groups Γ∗(S1,2) and Γ∗(S0,5) are not isomor-
phic. (More precisely, Γ∗(S1,2) is a subgroup of index 5 in Γ∗(S0,5).) Thus,
we have Γ∗(S1,2) *$ Aut(S1,2).
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The homomorphism Γ∗(S1,2) → Aut(C(S1,2) is also not injective, since the
hyperelliptic involution ι acts trivially on C(S1,2). (This was already known,
from works of Birman and of Viro, cf. [4] and [70].)
In the following theorem, we summarize the results on the automorphism
group of the complex C(S).

Theorem 6.3 (Ivanov-Korkmaz-Luo). Consider a surface Sg,n whose curve
complex C(S) has dimension ≥ 1. (Equivalently, the curve complex of C(S)
is connected; equivalently, S is not a sphere with at most four holes or a
torus with at most one hole). Then,we have the following.

(1) For (g, n) *∈ {(1, 2), (2, 0)}, the natural homomorphism

Γ∗(Sg,n) → Aut(C(Sg,n))

is an isomorphism.
(2) The homomorphism Γ∗(S2,0) → Aut(C(S2,0)) is surjective and its

kernel is of order two, generated by a hyperelliptic involution.
(3) The homomorphism Γ∗(S1,2) → Aut(C(S1,2)) is neither surjective

nor injective. The kernel of this homomorphism is of order two,
generated by the hyperelliptic involution, and its image is a subgroup
of index 5 in Aut(C(S1,2)). The image consists in the simplicial au-
tomorphisms of (C(S1,2) that preserve the set of vertices represented
by nonseparating curves.

Remark 6.4. The theorem of Ivanov-Kormkaz and Luo, as it is usually
stated, also includes a discussion of the case where the surface is a once-
punctured torus or a four-holed sphere. In these cases, the definition of
the vertex set of the complex of curves is modified, so that this complex
becomes one-dimensional and connected, and the study of its simplicial au-
tomorphism group becomes an interesting question. (We already noted that
with the usual definition, the complex is a countable union of vertices and,
therefore, its automorphism group is the group of permutations of an infinte
set, which is uncountable.) The modified definition is done by requiring the
following:
• In the case of the torus with one hole, two vertices of the curve complex
form an edge if and only if they can be represented by simple closed curves
intersecting in exactly one point. With such a definition, the natural homo-
morphism Γ∗(S1,1) → Aut(C(S1,1)) is surjective and its kernel is of order
two, generated by a hyperelliptic involution.
• In the case of the sphere with four holes, two vertices of the curve complex
form an edge if and only if they can be represented by simple closed curves in
minimal intersection position intersecting in exactly two points. With this
definition, the homomorphism Γ∗(S0,4) → Aut(C(S0,4)) is surjective and its
kernel is Z2 × Z2, generated by two hyperelliptic involutions.

We note finally that Luo, in his paper [39], gave a proof of Thorem 6.3 which
includes all the cases and which is different from the proofs by Ivanov and by
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Korkmaz. Luo’s proof uses induction, and it is in the spirit of Grothendieck’s
reconstruction principle.

7. Automorphisms of the pants decomposition complex

We first recall a few definitions.
A pants decomposition of S is a maximal collection of essential curves {Ci}
on S which are pairwise disjoint and nonhomotopic. Equivalently, each
connected component of S \ {Ci} is a sphere with three holes (i.e. a pair of
pants). Equivalently, the set {Ci} represents a top-dimensional simplex in
the curve complex C(S).
The cardinality of a pants decomposition of S is equal to 3g − 3 + n.
We shall also need the following notion:
A simple move between two pants decompositions is a transformation in
which a single curve is modified (that is to say, the two pants decompositions
involved in that move contain the same set of curves except for one curve)
such that this curve and its image by the move have the smallest possible
intersection number. This number is equal to one or to two, depending on
whether the curve that is transformed is on the boundary of one or of two
pairs of pants in each decomposition. The two types of simple moves are
represented in Figure 4.

Figure 4. The two types of simple moves that define the
edges of the pants decomposition graph.

We regard a simple move as an operation which is well defined up to isotopy,
so that we can talk of two isotopy classes of pants decomposition that are
obtained from each other by a simple move.

Definition 7.1 (Pants decomposition graph). The pants decomposition graph
P1(S) is the one-dimensional simplicial complex whose vertices are isotopy
classes of pants decompositions and where two vertices are joined by an edge
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if the two pants decompositions that represent them (up to homotopy) differ
by an simple move.

The pants decomposition graph was introduced by Hatcher and Thurston
in the appendix to their paper [24]. Hatcher and Thurston proved that
the pants decomposition graph P1(S) is connected, that is, any two isotopy
classes of pants decompositions on a surface can be obtained from each other
by a finite sequence of simple moves.
In the paper [22], Hatcher studied relations between simple moves. He high-
lighted five types of relations, and he constructed a two-dimensional cell
complex whose 1-skeleton is the graph complex and whose 2-cells are at-
tached via these five types of relations. These relations are better described
in pictures rather than in words. The first first two types of relations are
called triangle relations, and they are represented in Figure 5.

Figure 5. The two types of triangle relations in the pants
decomposition graph.

The third type of relation is called a pentagon relation, and it is represented
in Figure 6.
The fourth type of relation is called a hexagon relation, and it is represented
in Figure 7.
For the relation of the fifth type, one starts by noting that two simple
moves (where each move can be of either of the two types represented in
Figure 4) which are supported on disjoint subsurfaces of S commute. Their
commutator represents then a cycle of four moves, which, by definition, is
a relation of the fifth type, and which is called a quadrilateral relation. An
example of such a relation is represented in Figure 8.
In the paper [22], Hatcher made the following definition:

Definition 7.2 (Pants decomposition complex). The pants decomposition
complex P (S) is the two-dimensional cell complex obtained by attaching to
the pants decomposition graph all the two-dimensional cells that represent
the five types of relations described above.
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Hatcher proved that the two-dimensinal pants decomposition complex is
simply connected.
Note that the pants decomposition graph (and therefore the pants decom-
position complex) is empty if the surface S has nonnnegative Euler charac-
teristic, since in this case there is no pair of pants embedded in S.

Figure 6. The pentagon relation in the pants decomposition graph.

Figure 7. The hexagon relation in the pants decomposition graph.
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The two-dimensional pants decomposition complex is also described in the
paper [23] by Hatcher, Lochak and Schneps, where it is used in the context
of the Grothendieck-Teichmüller theory.
Margalit proved the following rigidity result:

Theorem 7.3 (cf. [43]). Let Sg,n be a surface of negative Euler character-
istic. If (g, n) *∈ {(0, 3), (1, 1), (1, 2), (2, 0), (0, 4)}, then the homomorphism

Γ∗(Sg,n) → Aut(P (Sg,n))

is an isomorphism. In the exceptional cases, we have the following:
(1) The homomorphism Γ∗(S0,3) → Aut(P (S0,3)) is not injective. (This

is because P (S0,3) is reduced to a point, and therefore Aut(P (S)) is
trivial, whereas Γ∗(S0,3) is not the trivial group.)

(2) The homomorphism Γ∗(S0,4) → Aut(P (S0,4)) is surjective, and its
kernel kernel is Z2 ⊕ Z2, generated by two hyperelliptic involutions.

(3) In the case where (g, n) = (1, 1), (1, 2) or (2, 0), the homomorphism
Γ∗(Sg,n) → Aut(P (Sg,n)) is surjective, and its kernel is Z2, gener-
ated by a hyperelliptic involution.

The proof by Margalit of Theorem 7.3 uses the result of Ivanov, Korkmaz
and Luo on the automorphisms of the curve complex (Theorem 6.3 above).
In fact, Margalit constructs an isomorphism between the groups Aut(P1(S))
and Aut(C(S)) which commutes with the natural homomorphism from of
the extended mapping class group into these two groups.
We also note that in the same paper, Margalit also proves the following:

Theorem 7.4. For any surface S of negative Euler characteristic, we have

Aut(P (Sg,n)) $ Aut(P1(Sg,n)).

Figure 8. An example of a quadrilateral relation in the
pants decomposition graph.
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8. Automorphisms of the arc complex

An arc in S is the homeomorphic image of a compact interval of R. An
arc s in S is said to be properly embedded if s ∩ (S \ ∂S) = ∂s. A properly
embedded arc s is said to be essential if there is no closed disk embedded in
S whose boundary consists of the union of s with an arc contained in ∂S.
In this section, all arcs in S are supposed to be properly embedded and
essential, and we shall omit these adjectives when talking about arcs.

Definition 8.1. The arc complex of S is the flag simpicial complex whose
k-simplices, for every k ≥ 0, are the isotopy classes of k + 1 pairwise non-
isotopic disjoint arcs on S.

As special cases, if S = S0,3 is a sphere with three holes, then A(S0,3)
is connected and two-dimensional, with a finite number of simplices. If
S = S1,1 is a torus with one hole, then A(S1,0) is connected, one-dimensional
and infinite (it is a Farey graph).
Note that if S is a closed surface, then A(S) is empty.
Homeomorphisms and isotopes of S take disjoint arcs to disjoint arcs, and
the extended mapping class group of S acts simplicially on A(S).
Irmak and McCarthy gave a complete description of the automorphism
group of the arc complex. Their result is the following:

Theorem 8.2 (Irmak-McCarthy [28]). Let Sg,n be a surface with nonempty
boundary and with negative Euler characteristic. Then, the natural homo-
morphism

ρ : Γ∗(S) → Aut(A(S))
is an isomorphism provided (g, n) *∈ {(1, 1), (0, 3)}. In the exceptional cases,
the kernel of ρ is the centre of Γ∗(S). In other words, we have the following:

(1) if S is a pair of pants, the kernel of ρ is Z2, generated by the isotopy
class of any orientation-reversing involution of S that preserves each
boundary component of S;

(2) if S is a torus with one hole, the kernel of ρ is Z2, generated by a
hyperelliptic involution of the surface S.

We note that Irmak and McCarthy obtained a stronger result, namely, they
proved that any injective simplicial self-map of A(S) is induced by a home-
omorphism of S.

9. Automorphisms of the Schmutz graph of nonseparating
curves

In [63], Paul Schmutz Schaller introduced and studied a new one-dimensional
simplicial complex G(S) associated to S. The definition depends on whether
the genus of S is 0 or ≥ 1.
We recall that the geometric intersection number of two simple closed curves
is the minimum number of intersection points of two representatives of the
isotopy classes of these curves.
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Definition 9.1 (The Schmutz graph). Let S = Sg,n be a surface of negative
Euler characteristic which is not a pair of pants. Then:

(1) For g ≥ 1, the vertex set of G(S) is the set of isotopy classes of
nonseparating simple closed curves on S, and two vertices are related
by an edge whenever their geometric intersection number is 1.

(2) For g = 0, the vertex set of G(S) is the set of isotopy classes of
simple closed curves on S which separate S into two components
one of which is a pair of pants. (Note that two of the boundary
components of this pair of pants are boundary components of S, and
therefore such a boundary component does not exist if b ≤ 1.) In this
case, two vertices are related by an edge whenever their geometric
intersection is equal to two.

Schmutz Schaller proved that G(S) is connected and that the automorphism
group of this complex is equal to the mapping class group modulo its centre.
More precisely, he proved the following:

Theorem 9.2 (Schmutz Schaller [63]). Let S = Sg,n be a surface of neg-
ative Euler characteristic which is not a pair of pants. Then, if (g, n) *∈
{(0, 4), (1, 1), (1, 2), (2, 2)}, the natural homomorphism

Γ∗(S) → G((S))

is an isomorphism. Furthermore, in the exceptional cases, the situation is
as follows:

(1) for (g, n) ∈ {(1, 1), (1, 2), (2, 2)}, the homomorphism is surjective,
and its kernel is Z2, generated by a hyperelliptic involution of S;

(2) for (g, n) = (0, 4), the homomorphism is surjective, and its kernel is
is Z2 ⊕ Z2, generated by two hyperelliptic involutions.

In his study of the complex G(S), Schmutz Schaller was motivated by the
study of the structure of the collection of systoles of hyperbolic surfaces.
We note that in this context, it is more natural to think of Sg,n as a surface
of genus g with n cusps rather than a surface of genus g with n boundary
components.

10. Automorphisms of the complex of nonseparating curves

Definition 10.1. The complex N(S) of nonseparating curves is the flag
simplicial complex whose k-simplices, for every k ≥ 0, are the isotopy classes
of nonseparating simple closed curves on S.

Note that N(S) is canonically isomorphic to the subcomplex of C(S) induced
by the set of vertices that are isotopy classes of nonseparating simple closed
curves.
E. Irmak proved the following:
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Theorem 10.2 (Irmak [26]). Suppose that the genus of S is ≥ 2. Then,
the natural homomorphism

Γ∗(S) → Aut(N(S))

is an isomorphism, except if S is the closed surface of genus 2, in which case
the automorphism group of N(S) is Γ∗(S)/Z2, where Z2 is generated by the
hyperelliptic involution of S.

11. Automorphisms of the systolic complex of curves

In this section, we describe another simplicial complex that appears in the
study of systoles of hyperbolic surfaces, which was defined by Schmutz
Schaller in his paper [63].
The definition of the systolic complex of curves depends on whether the
number of boundary components of the surface is ≤ 1 or ≥ 2.

Definition 11.1. The systolic complex of curves SC(S) is the simplicial
complex defined as follows:

(1) If b ≤ 1, then the vertices of SC(S) are the homotopy classes of
non-separating simple closed curves on S, and for all k ≥ 1, the k-
simplices of SC(S) are the collections of k + 1 homotopy classes of
non-separating simple closed curves on S which mutually intersect
in at most one point.

(2) If b ≥ 2, then the vertices of SC(S) are either homotopy classes
of non-separating simple closed curves on S or homotopy classes of
simple closed curves which have one of their complementary compo-
nents homeomorphic to a pair of pants. (Note that this implies that
two of the boundary components of the pair of pants are boundary
components of S.) For k ≥ 1, the k-simplices of SC(S) are sets
of k + 1 vertices such that two homotopy classes of non-separating
curves representing two vertices of this simplex intersect at most
once, and such that any homotopy class of separating curves repre-
senting another vertex of such a simplex intersects any other curve
representing a vertex at most twice.

P. Schmutz Schaller studied the complex SC(S) as a natural combinatorial
object that encodes some information on the set of systoles on the surface
S. In this context, as in the context of the Schmutz graph of Section 9,
the surface is realized as a hyperbolic surface with cusps instead of bound-
ary components. In see [63] p. 244, Schmutz Schaller makes the following
conjecture

Conjecture 11.2. The automorphism group of the systolic complex SC(S)
is isomorphic to the extended mapping class group.

Schmutz Schaller says he can prove this conjecture in the cases where (g, n) =
(1, 1), (1, 2), (2, 0) and (2, 0). He considers Theorem 9.2 as a step towards
proving conjecture 11.2.
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12. Automorphisms of the Hatcher-Thurston complex of cut
systems

The Hatcher-Thurston complex of cut systems is a two-dimensional cell
complex (which is not a simplicial complex). In order to define it, we need
to recall the definition of a cut system.
A cut system on S is the isotopy class of a set of pairwise disjoint closed
curves such that the surface S cut along this collection of curves is a sphere
with holes. Note that the number of holes is then equal to 2g + 2.
We note that if the genus of S is 0, then there is no cut system on S. Thus,
for the rest of this section, we suppose that the genus of S is ≥ 1.
Note that each of the curves defining a cut system is necessarily nonseparat-
ing, and that the genus of the surface S is (by the definition of the genus)
the cardinality of a cut system on S.
Hatcher and Thurston introduced a notion of simple move between cut sys-
tems.
A simple move consists in replacing, in a cut system, one of the curves with
a new curve, such that the old and the new curves intersect in exactly one
point. There are two sorts of simple moves, and they are the represented
by the same pictures than those that represent the simple moves of the
Hatcher-Thurston pants graph (see Figure 4 above).
In the same way as for simple moves between pants decompositions, we
regard a simple move between cut systems as an operation which is well
defined up to isotopy, so that we can talk of two isotopy classes of cut
systems that are obtained from each other by a simple move.
Definition 12.1 (The cut-system graph). We suppose that the genus of
Sg,n is ≥ 1. The cut-system graph is the simplicial graph whose vertex set
is the set of isotopy classes cut systems on S and whose edges are the pairs
of cut systems that are related by a simple move.
Note that in the case where the genus of S is 1, a cut system is reduced to
a single nonseparating curve, and that in this case the 1-dimensional cut-
system graph coincides with the Schmutz graph G(S) defined in Section 9
above.
The graph HT1(S) is the one-skeleton of a two-dimensional cell complex,
which we shall call the (2-dimensional) Hatcher-Thurston complex, which
we denote by HT (S) and which we shall define below.
We shall call a path in a graph G a finite sequence v1, . . . , vn of vertices of
G such that any two consecutive vertices in this sequence are connected by
an edge. Such a path is said to be a cycle if v1 = vn.
Hatcher and Thurston introduced three types of cycles in the complex
HT1(S), called distinguished cycles. These cycles define the relations be-
tween sequences of simple moves in the sense that if we have two different
sequences of simple moves that join two given cut systems, then we can pass
from one sequence to the other using distinguished cycles.
three types of distinguished cycles are the following:
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• A Triangular cycle: This is a closed path in HT1(S) having three
vertices represented by three cut systems that have g − 1 curves
in common and such that the remaining curves in these three cut-
systems are represented by simple closed curves C1, C2, C3 whose
intersection pattern is represented in Figure 9 (a).

• A Rectangular cycle: This is a closed path in HT1(S) having four
consecutive vertices represented by cut systems that have g−2 curves
in common, and such that the remaining pairs of curvess in the four
cut-systems are pairs {D1, C1}, {C1,D2}, {D2, C2}, {C2,D1} whose
intersection pattern is represented in Figure 9 (b). (The cyclic order
given here represents the cyclic order of the path in HT1(S).)

• A Pentagonal cycle: This is a closed path in HT1(S) having five
consecutive vertices represented by cut systems that have g−2 curves
in common, and such that the remaining pairs of curves in these cut-
systems are pairs {C2, C5}, {C5, C3}, {C3, C1}, {C1, C4}, {C4, C2}
whose intersection pattern is represented in Figure 9 (c). (Again,
the cyclic order given here represents the cyclic order of the path in
HT1(S).)

Now we can give the following

Definition 12.2 (The two-dimensional Hatcher-Thurston cell complex).
Let Sg,n be a surface of genus g ≥ 1. The two-dimensional Hatcher-Thurston
cell complex HT (S) is obtained from the one-dimensional cut system com-
plex by adding for each distinguished closed path a two-cell with attaching
map this distinguished closed path.

(a) (b) (c)

C1

C1

C2

C2

C2 C3

D2

C1

C2

C3

C4

C5

Figure 9. The triangle, the quadrilateral and the pentago-
nal cycles in the Hatcher-Thurston cell complex

Hatcher and Thurston proved in [24] that the complex HT (S) is connected
and simply connected provided the genus of S is at least one and they used
this complex to find a presentation of the mapping class group [24]. Let
us also note that Harer used this complex in his computation of the second
homology group of the mapping class group [19].
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The automorphisms of this complex were studied by E. Irmak and M. Ko-
rkmaz, who proved in [27] that the group Aut(HT (S)) of cellular automor-
phisms of HT (S) is the extended mapping class group modulo its centre.
More precisely, they proved the following.

Theorem 12.3 (Irmak and Korkmaz [27]). For any g ≥ 1 and n ≥ 0
satisfying (g, n) *∈ {(1, 0), (1, 1), (1, 2), (2, 0)}, the natural map

Γ∗(Sg,n) → Aut(HT (Sg,n)

is an isomorphism. In the exceptional cases, theis map is surjective and its
kernel is Z/2.

Irmak and Korkmaz proved Theorem 12.3 using the Schmutz complex. A
beautiful ingredient in their proof is the encoding of nonseparating simple
closed curves on S by vertices and edges in the Hatcher-Thurston complex.
(Remember that every curve in a cut-system, representing a vertex of the
Hatcher-Thurston complex HT (S), is nonseparating.) Using this, the au-
thors show that any automorphism of HT (S) induces an automorphism of
the set of nonseparating simple closed curves. They than show that such an
automorphism sends a pair of isotopy classes of nonseparating curves whose
geometric intersection number is equal to one to a pair having the same
property. From this, they construct a homomorphism from Aut(HT (S))
to the Schmutz complex G(S), and they finally prove that this map is an
isomorphism.
We finally note that in her paper [26] p. 84, Irmak says that the Isomorphism
Theorem 12.3 can also be deduced from her result about the automorphism
group of the complex of nonseparating curves (Theorem 10.2 above).

13. Automorphisms of the complex of domains

In this section, I describe joint work with John McCarthy.
As before, S = Sg,n is a compact connected orientable surface genus g with
n boundary components (genus g with n holes).
We shall say that a curve α in S is k-peripheral if there exists a sphere with
k holes embedded in S such that α is a boundary component of X and all
the other boundary components of X are boundary components of S.
Note that a curve α is essential if it is not 0 or 1-peripheral.
A domain X in S is a compact connected subsurface with boundary of S
such that

• X *= S
• each component of ∂X is either a boundary component of S or an

essental curve in S.

Definition 13.1 (The complex of domains). The complex of domains D(S)
is the flag simplicial complex whose k-simplices, for each k ≥ 0, are the
isotopy class of k + 1 pairwise disjoint and non-isotopic domains.
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The following special vertices of D(S) play an important role in the theory
of the complex of domains:

• annular vertices: isotopy classes of regular neighborhoods of essential
curves.

• vertices represented by biperipheral pairs of pants: isotopy classes of
domains homeomorphic to pairs of pants which have two boundary
components that are boundary components of S.

The extended mapping class group Γ∗(S) acts on the collection of isotopy
classes of domains, sending a pair of isotopy classes that can be represented
by disjoint domains to a pair of isotopy classes that have the same property.
Therefore, we have a homomorphism from Γ∗(S) to the simplicial automor-
phisms group Aut(D(S)). For instance, one can use the action induced by
Γ∗(S on the fubcomplex induced by the annular vertices, which is canon-
ically identified with the curve complex C(S). It follows from well-known
results that this homomorphism is injective. We shall see that for any sur-
face Sg,n satisfying b ≤ 1, this homomorphism is also surjective. In the other
cases, we shall describe exactly the structure of Aut(D(S), and describe the
image of the group Γ∗(S) in this group.
The complex of domains D(S) is connected except in the cases where S is
a sphere with at most four holes or a torus with at most one hole. Indeed,
in the non-excluded cases, each vertex of D(S) can be connected by an
edge to an annular vertex, and the connectedness of D(S) follows from the
connectedness of the curve complex. Furthermore, in all the cases where it
is connected, D(S), like C(S) is locally infinite.
Let us analyze two simple examples.

Example 13.2 (The torus with one hole). Let S = S1,1, the torus with one
hole. Then, D(S) is isomorphic to the product C(S)× I, where C(S) is the
curve complex of S and where I is a fixed abstract edge. Indeed, the curve
complex C(S) is a discrete set, it is embedded in D(S) as the subcomplex
induced by the annular vertices, and, in the case of the torus with one
hole, to each vertex of D(S) represented by annulus, one can associate in a
canonical way a nonannular vertex, represented by a pair of pants contained
in the complement of that annulus.
Thus, D(S) is a fiber space over C(S), with fiber an edge. Note that there
are two natural sections of this fiber space, which correspond to taking in
each fiber the vertex corresponding to the annular vertex and, respectively,
the nonannular vertex.
Thus, for S = S1,1, Aut(D(S)) is an extension of the permutation group of
the infinite countable set C(S) by the symmetry group of the triangle ∆.
Thus, Aut(D(S)) is uncountable, since it contains the permutation group
on the infinite set C(S). This implies in particular that Aut(D(S)) is not
isomorphic to the extended mapping class group Γ∗(S) of S, which is the
group GL(2, Z) and, therefore, is countable.
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In fact, if we consider an element of Aut(D(S)) that is supported on one
connected component {x} × I of D(S) $ C(S) × I, then the symmetry of
the edge I which exchanges the two vertices is nongeometric, that is, it is
not induced by an extended mapping class.

Example 13.3 (The sphere with four holes). Let S = S0,4, the sphere with
four holes. Then, D(S) has also a product structure D(S) $ C(S)×∆, where
C(S) is the curve complex of S and where ∆ is a fixed abstract 2-dimensional
simplex (a triangle). Thus, in this case, D(S) is a fiber space over C(S), with
fiber ∆. There is a natural section of this fiber space, which corresponds to
taking in each fiber the vertex corresponding to the biperipheral annulus.
However, there is no natural way of choosing a biperipheral pair of pants
in each fibre. Thus, this fiber space is trivializable but with no natural
trivialization.
As in the preceding example, the automorphism group Aut(D(S0,4)) is un-
countable, because it contains the permutation group on the infinite set
C(S), which implies in particular that Aut(D(S0,4)) is not isomorphic to
the extended mapping class group Γ∗(S0,4) of the sphere with four holes
S0,4, which is a finite extension of SL(2, Z) and, therefore, is countable.(The
fact that Γ∗(S0,4) is a finite extension of SL(2, Z) is proved by considering
the sphere as a quotient of the torus by an order-two involution that fixes
four points.)
Thus, for S = S0,4, Aut(D(S)) is an extension of the permutation group of
the infinite countable set C(S) by the symmetry group of the triangle ∆.
Note that the elements of Aut(D(S)) that are supported on one connected
component {x}×∆ of D(S) $ C(S)×∆ form a subgroup which is isomorphic
to the symmetry group of the traingle ∆. If such a symmetry exchanges the
two nonannular vertices, then it is geometric (that is, it is induced by a
mapping class), whereas a symmetry which exchanges an annular and a
nonannular vertex is not geometric.

Note the following two features of the complex of domains D(S)
1) Unlike C(S), the maximal dimension of a simplex containing a given
vertex depends on that vertex (in fact, it depends on the topology of a
domain on S representing that vertex).
2) D(S) contains several interesting subcomplexes, for instance, the follow-
ing:

(1) the complex C(S) (and its subcomplexes);
(2) the complex of pair of pants (that is, the complex induced by the set

of vertices that represent domains which are homormorphic to pairs
of pants; note that this is not the pants complex that we discussed
in Section 7);

(3) the subcomplex induced by the set of nonannular vertices of D(S).
Note that any domain X in S has its own complex of domains D(X) (which
may be empty), and that the complex D(X) is a subcomplex of the complex
D(S). Any two vertices in D(X) are connected by an edgepath of length
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≤ 2 in the complex D(S). (Remember that X *= S, by the definition of a
domain.)
Some of these complexes and inclusions are well understood, and the others
are certainly worth studying.

Definition 13.4 (The truncated complex of domains). The truncated com-
plex of domains D2(S) is the subcomplex of D(S) induced by the set of
vertices that are represented by domains which are not biperipheral pairs of
pants.

Remarks 13.5. 1) D2(S) = D(S) if S has at most one boundary compo-
nent.
2) If S has genus ≥ 1, then D(S) and D2(S) have the same dimension.
3) Si S has genus 0, then dim(D2(S))) = dim(D(s)) − 2.

We first state a result concerning the automorphism group of D2(S).

Theorem 13.6 (Automorphisms of D2(S)). Suppose that S is not a sphere
with at ≤ 4 holes, a torus with ≤ 2 holes or a closed surface of genus 2.
Then, the natural homomorphism

Γ∗(S) → Aut(D2(S))
is an isomorphism.

Note that since D2(S) = D(S) if b ≤ 1, then, Theorem 13.6 is also a
theorem about the automorphisms of the complex of domains for surfaces
with at most one boundary components (in particular, for closed surfaces).
The elaborate part of the proof of Theorem 13.6 is the proof of the surjec-
tivity. I will give here an idea of this proof. It involves the following three
steps.

Step 1.— Let φ be a simplicial automorphism of D2(S) and suppose that S
is not a torus with one hole. Then, φ restricts to a simplicial automorphism
of the subcomplex of D2(S) induced by the set of annular vertices.
The proof of this fact is based on a simplicial characterization of annular
vertices, which is given by the following:

Proposition 13.7 (Proposition 6.1 of [49]). Suppose that S is not a torus
with one hole and let x be a vertex of D2(S). Then the following are equiv-
alent:

(1) x is an annular vertex;
(2) for each vertex y of D2(S) which is not equal to x, St(x,D2(S)) is

not contained in St(y,D2(S)).

Step 2.— The restriction of φ to the subcomplex of D2(S) which is induced
by the set of annular vertices is induced by an element η of the extended
mapping class group of S.
This follows from the Theorem of Ivanov-Korkmaz-Luo on the automor-
phisms of the curve complex (Theorem 6.3 above), and it uses the fact that
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S is neither a sphere with at most four holes nor a torus with at most two
holes.

Step 3.— Let h : S → S be a homeomorphism provided by Step 2, in-
ducing the automorphism η of C(S). We must prove that h induces the
automorphism φ on D2(S). To see this, we consider the automorphism
h∗ : C(S) → C(S) induced by the homomorphism h of S, and we let
ψ = h−1

∗ ◦ φ : D2(S) → D2(S). We identify the complex C(S) with its
image in D2(S). The automorphism ψ fixes every vertex of C(S) ⊂ D2(S),
and we must show that ψ is equal to the identity map of D2(S). This is
done by introducing the following new notion:

Definition 13.8. Let x be a vertex of D(S). The annular link Ann(x)
of x in D(S) is the subcomplex of D(S) consisting of those simplices of
Lk(x,D(S)) all of whose vertices are annular.

The following proposition is a particular case of Proposition 7.6 of [49].

Proposition 13.9. Suppose that S is neither a sphere with four holes nor
a torus with at most two holes nor a closed surface of genus two, and let x
and y be vertices of D(S). Then, Ann(x) = Ann(y)ifandonlyifx = y.

Now let v be a vertex of D2(S). Since ψ is an automorphism of D2(S)
preserving C(S), ψ(Ann(v)) = Ann(ψ(v)). On the other hand, since Ann(v)
is a subcomplex of C(S) and since ψ fixes each vertex of C(S), ψ(Ann(v)) =
Ann(v). Hence, Ann(ψ(v)) = Ann(v). Since S is not a sphere with four
holes, a torus with at most two holes, or a closed surface of genus two, it
follows from Proposition 13.9 that ψ(v) = v. This proves that ψ is the
identity automorphism of D2(S), which implies that φ = h∗. Hence, the
natural homomorphism Γ∗(S) → D2(S) is surjective.
Next, we study the automorphisms of D(S). For this, we have to deal with
the existence of biperipheral pairs of pants.
A biperipheral edge of D(S) is an edge whose vertices are a vertex represented
by a biperiperal pair of pants and an annulus which is isotopic to the regular
neighborhood of the essential boundary component of that pair of pants.
Any automorphism of D(S) induces an automorphism of D2(S). This is
based on the following proposition:

Proposition 13.10. Suppose that S is not a sphere with four holes, let
{x, y} be a pair of distinct vertices of D(S) and let φ ∈ Aut(D(S)). Then,
{x, y} is a biperipheral edge if and only if {φ(x),φ(y)} is a biperipheral edge.

Note that the automorphism φ can exchange the nature of the vertices x
and y (it could send the vertex represented by a biperipheral pair of pants
to a vertex represented by a biperipheral curve). We shall discuss this fact
below.
The proof of Proposition 13.10 is based on the following simplicial charac-
terization of biperipheral edges, which is a particular case of Proposition 9.3
of [49].
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Proposition 13.11 (Vertices with the same star in D(S)). Suppose that S
is not a sphere with four holes, a torus with at most two holes or a closed
surface of genus two, and let x and y be distinct vertices of D(S). Then the
following are equivalent:

(1) St(x,D(S)) = St(y,D(S));
(2) the pair {x, y} is a biperipheral edge of D(S).

To formulate the result on the automorphism group of D(S), we use the
following notion that was introduced in [49]:

Definition 13.12 (Simple exchange automorphism). Let K be a simplicial
complex, {x, y} be a pair of vertices of K, and let ϕ : K → K be an
automorphism of K. We say that ϕ is a simple exchange of the complex K,
exchanging the vertices x and y, if ϕ(x) = y, ϕ(y) = x, and ϕ(z) = z for
every vertex z of K which is distinct from x and y.

A pair of vertices x and y satisfying the properties in Definition 13.12 will
be called an exchangeable pair.
The following follows easily from Proposition 13.11:

Proposition 13.13. Let K be a simplicial complex. Let E be a collection
of exchangeable pairs of distinct vertices of K with the property that no
two distinct pairs in E have a common vertex. Then there exists a unique
automorphism ϕE : K → K such that

(1) for each pair {x, y} in E, ϕE(x) = y and ϕE (y) = x;
(2) ϕE (z) = z for every vertex z which is not an element of some pair

in E.

Definition 13.14. Let K, E and ϕE : K → K be as in Proposition 13.13.
We call the automorphism ϕE : K → K of K the generalized exchange of K
associated to E .

Proposition 13.15. Let K be a simplicial complex and let x and y be
vertices of K which are connected by an edge. Suppose that K is a flag
complex. Then the following are equivalent:

(1) x and y are exchangeable in K;
(2) St(x,K) = St(y,K).

Proposition 13.16. Suppose that S is not a sphere with four holes. Then,
any two biperipheral edges of S are either equal or disjoint.

This proposition allows us to define an exchange automorphism associated
to an arbitrary set of biperipheral edges.
Let E be the set of biperipheral edges of D(S). Note that E is an infinite
set unless it is the empty set.
The following is a consequence of Proposition 13.16.

Proposition 13.17. Suppose that S is not a sphere with four holes. Then,
there exists a monomorphism Φ from the set of all subsets of E into Aut(D(E))
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such that for each subset F of biperipheral edges of D(S), Φ(F) is the au-
tomorphism which exchanges the two vertices of each biperipheral edge of F
and fixes each vertex of D(S) that is not the vertex of a biperipheral edge in
F .

Using this proposition and using Theorem 13.6, we obtain the following:

Theorem 13.18. Suppose that S is not a sphere with at most four holes, a
torus with at most two holes, or a closed surface of genus two. and let E be
the collection of biperipheral edges of D(S). Let ϕ ∈ Aut(D(S)). Then there
exists a unique subset F of E and a unique element γ of Γ∗(S) such that
ϕ = ϕF ◦γ∗ where ϕF is the exchange automorphism of D(S) corresponding
to F and γ∗ is the geometric automorphism of D(S) induced by γ.

Part 3. ACTIONS ON SPACES OF FOLIATIONS

14. Measured foliations

This section contains a short review of the theory of measured foliations
that is necessary to understand the rigidity results that we present in the
following sections.
The basic theory is explained in [16].
For simplicity of the exposition, and to avoid talking about singular points on
the boundary, we shall limit ourselves to the case where S is a closed surface
of genus g ≥ 1, but the theory works as well for surfaces with boundary.
We consider foliations with singularities on S, where the singular points are
“generalized saddles”, that is, isolated points with k separatrices where all
values of k ≥ 3 are allowed. The local models at the singular points are
given in Figure 10 below.4

Figure 10. The four pictures represent singular points of
measured foliations, with k-separatrices, for k = 3, 4, 5, 6 re-
spectively.

Note that provided the surface S is not the torus, any foliation on S has at
least one singular point.
A transverse measure for a foliation is a measure on each transverse arc
that is equivalent to the Lebesgue measure of an interval of R, such that
the measure on arcs is invariant by the local holonomy maps, that is, by
isotopies of arcs that keep each point on the same leaf.

4Bill Browder suggests that, because of the local model at the singular points, we call
such foliations graph foliations.
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A Whitehead move is an operation on measured foliations that consists in
contracting to a point a compact leaf that joins two singular points, or the
inverse move. An example of a Whitehead move is represented in Figure 11.
The equivalence relation between measured foliations that is generated by
isotopy and Whitehead moves is called Whitehead equivalence.
The space of Whitehead equivalence classes of measured foliations is called
measured foliations space, and it is denoted by MF or MF(S).
Given a measured foliations F on S, we shall use the notation [F ] for its
equivalence class in MF .

Figure 11. Whitehead move: collapsing or creating an arc
joining two singular points.

It will also be convenient to represent elements of MF by partial measured
foliations, that is, measured foliations whose supports are nonempty (and
not necessarily connected) subsurfaces with boundary of S. We shall denote
by Supp(F ) the support of a partial measured foliation F . If F is a partial
measured foliation, then, a genuine measured foliations F0 (which we some-
times call a total measured foliation, to stress the fact that its support is
equal to S) is obtained from F by collapsing each connected component of
S \ Supp(F ) onto a spine. The equivalence class of F0 does not depend on
the choice of the spines (because different spines of a surface with boundary
differ by a Whitehead move). In this way, a partial measured foliation gives
a well defined element of MF .
We let S be the set of isotopy classes of essential curves on S.
THis is a natural map from R∗

+ × S into MF , which is defined as follows.
Given a pair (r, [c]) where r > 0 and [c] is the isotopy class of an essential
curve c on S, we consider an annulus N in the interior of S which is isotopic
to a regular neighborhood of c, and we foliate N by closed leaves which
are homotopic to c. We obtain a foliated annulus, and we equip it with a
transverse measure such that the total transverse measure of a segment that
joins the two boundary components of that annulus and that is tranverse to
the foliation is equal to r. The result is a partial measured foliation on S,
which, by the above discussion, gives a well defined element of MF . The
resulting map R∗

+ × S → MF is injective.
We also need to talk about the components of a measured foliation.
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Every equivalence class of measured foliations has a well defined finite num-
ber of components, defined as follows.
Let F be a measured foliation on S. The singular graph K of F is the union
of the compact leaves that join the singular points of F . We define the
components of F as the (partial) measured foliations that are the closures
of the connected components of S \K. In this way, each measured foliation
on S can be decomposed into a union of finitely many components. Each
component is a partial measured foliation which provides a well defined
element of MF . The set of equivalence classes of the components of F
depends only on the equivalence class of F .
We now recall the definition of the geometric intersection function MF ×
S → R+.
For any measured foliation F and for any element γ of S, we define i(F, γ)
to be the infimum of the total measure of c over all closed curves c in the
homotopy class γ which are made up of arcs transverse to F and arcs in the
leaves of F . (To compute the total measure of c, we consider the transverse
measure of the arcs of c that are contained in the leaves of F to be equal to
0.)
The quantity i(F, γ) does not depend on the choice of the Whitehead equiv-
alence class of F . Thus, we obtain a map i(., .) defined on the product
MF × S, called the geometric intersection function.
Using this intersection function, we naturally obtain a natural map from
the space MF to the space RS

+ of nonnegative functions on S. This map
is injective. In other words, the collection of intersection functions of a
measured foliation class with the set of all isotopy classes of simple closed
curves uniquely determines the measured foliation class.
The set MF inherits a topology from this injection into RS

+, which makes it
homeomorphic to R6g−6 \{0}. It is sometimes useful to consider the “empty
foliation” as an element of MF (and we shall do this in the next section).
In this case, the space MF is homeomorphic to R6g−6.
There is a natural action of the set of positive reals R∗

+ on MF , obtained
from this action of R∗

+ on measured foliations defined by multiplying the
transverse measure by a constant positive factor.
The quotient space of MF by the action of R∗

+ is denoted by PMF .
From the embedding of MF into the space RS

+ we obtain an embedding of
PMF in the projectived space PRS

+.
Finally, we recall that the intersection function i : MF × S → R+ extends
continuously to an intersection function defined on MF × MF which is
denoted by the same letter:

i : MF ×MF → R+.

15. Automorphisms that preserve intersection functions

For each α in F , let iα : MF → R+ be the associated intersection function.
The following definitions are made by F. Luo in [40].
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Definition 15.1 (F-structure). An F-structure on a topological space X
is a collection F of (real or complex-valued) functions defined on X, such
that the collection

{f−1(U) | U is open in R (respectively in C) and f ∈ F}
of subsets of X is a sub-basis for the topology of that space.

Definition 15.2. Given an F-structure on a toplogical space X, an au-
tomorphism of this structure is a homeomorphism φ : X → X satisfying
φ∗(F) = F where φ∗(F) = {f ◦ φ | f ∈ F}.
Luo proves the following:

Theorem 15.3 (Luo [40]). Let S be a closed surface S of genus ≥ 2 and
consider the F-structure

F = {iα | α ∈ S}
on MF , where iα : MF → R+ denotes the intersection function. Then,
any automorphism of (MF ,F) is induced by an element of the extended
mapping class group.

As a corollary, Luo obtains the following:

Corollary 15.4 (Luo [40]). Let S be a closed surface of genus ≥ 2. For
each α ∈ S, let PZα be the image in PMF of the set Z(α) = {F ∈
MF | i(α, F ) *= 0} by the natural quotient map MF → PMF . Then,
any homeomorphism of PMF preserving the collection {PZα | α ∈ S} of
subsets of PMF is induced by an element of the extended mapping class
group.

We note that Luo’s results in [40] also include the cases of surfaces with
boundary.
The proof by Luo of these results uses the theorem of Ivanov, Korkmaz and
Luo on the automorphism of the complex of curves (Theorem 6.3).
In the same paper, Luo considers the F-structure on Teichmüller space con-
sisting of length functions, and he states a result which is analogous to
Theorem 15.4, that is, any automorphism of Teichmüller space that pre-
serves the F-structure of length functions is induced by an element of the
extended mapping class group.
Finally, we note that Luo also defined on the space of conjugacy classes of
representations of the fundamental group of a closed surface in SL(2, C) an
F-structure associated to the trace functions {trα | α ∈ S}, and he asked
the question of stydying the automorphism group of that structure.

16. Train tracks

We shall review the notion of train track and we shall recall some basic facts
about the train track piecewise linear (PL) structure of the space MF of
equivalence classes of measured foliations on a surface. For simplicity, we
shall suppose that S = Sg is a closed oriented surface of genus g ≥ 2.
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The notion of train track was introduced by Thurston in [67]. A standard
reference on train tracks is the monograph [61] by Penner and Harer.
A train track τ on S is a graph embedded in S whose vertices are all trivalent
and such that the three half-edges that abut on any vertex have a well
defined tangent at that point. The local structure at a vertex is represented
in Figure 12. (In fact, no smooth structure on S is really needed to define
a train track, and instead of talking about a tangent direction at a vertex,
one can simply say that there is a well defined notion of “two half-edges
abutting from the same side” and “one half-edge abutting from the other
side” at each vertex.)
We note that a train track can have no vertices, i.e. it could consist of a
union of disjoint simple closed curves, and in that case we shall also call
such a closed curve an edge of the train track.
A vertex of τ is also called a switch. We shall call a corner of S a region in
a neighborhood of a switch which is contained between the two half-edges
that abut from the same side. All the train tracks τ that we consider satisfy
the following property: any connected component of S \ τ is not a disk with
0, 1 or 2 corners or an annulus with no corner (cf. Figure 13).

Figure 12. The local model at a switch.

Figure 13. The shaded regions represent the four types of
excluded components of the complement of a train track.

A train track τ is said to be maximal if every component of S \ τ is a disk
with three corners on its boundary.
Any train track τ has a regular neighborhood N(τ) foliated by arcs that are
called the ties. The local picture of the foliation by the ties near a switch
is represented in Figure 14. The regular neighborhood N(τ), equipped with
its foliation by the ties, is well defined up to isotopy, and there is a natural
projection N(τ) ↘ τ which is defined by collapsing every tie to a point.
Let τ be a train track and let e1, . . . , eN be its edges. Let RN denote the
real vector space with basis {e1, . . . , eN} and let (x1, . . . , xN ) denote the
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coordinates of a point in that space. We let Vτ ⊂ RN denote the closed
convex cone in RN defined by the system

{
xi ≥ 0 for every i = 1, . . . , n
xi = xj + kk for every switch of τ

where, in the equations, xj and xk denote the weights at the two edges that
abut from the same side at the given switch, and xi is the weight on the
edge that abuts from the other side on that switch.
A train track τ is said to be recurrent if there exists an element (x1, . . . , xN )
of Vτ satisfying xi > 0 for all i = 1, . . . , N .
Let τ be a train track on S. There is a map

ϕτ : Vτ → MF

defined as follows. Let N(τ) be a regular neighborhood of τ equipped with
its projection N(τ) ↘ τ . Let (x1, . . . , xN ) be a nonzero element of Vτ . For
each nonzero coordinate xi, consider the inverse image of the edge ei by
the projection N(τ) ↘ τ . The closure of the interior of this inverse image
has a natural structure of a rectangle equipped with a foliation induced
by the ties, which we call the “vertical” foliation. We equip this rectangle
with another foliation, which we shall call the “horizontal” foliation, whose
leaves are segments which are transverse to the ties and which join the two
edges of the rectangle that consist of ties. We equip this horizontal foliation
with a transverse measure whose total mass is equal to xi. We can glue the
various foliated rectangles along their vertical sides using measure-preserving
homeomorphisms. We obtain a partial measured foliation on S, which, by
the construction described in Section 14, gives a well defined element of MF .
The zero element of Vτ is sent to the empty foliation of MF . This defines
the map ϕτ : Vτ → MF . This map is a homeomorphism onto its image,
and in the case where τ is maximal and recurrent, the image ϕτ (Vτ ) = Uτ
has nonempty interior in MF (see [55] p. 20).
A measured foliation F (or its equivalence class [F ] ∈ MF) is said to be
carried by a train track τ if [F ] is in the image Uτ of Vτ by the map ϕτ .

Figure 14. The regular neighborhood and the local struc-
ture of the ties near a switch



RIGID ACTIONS OF MAPPING CLASS GROUPS 41

If τ and σ are two train tracks on S, we say that τ is carried by σ, and
we write this relation as τ ≺ σ, if τ is isotopic to a train track τ ′ which is
contained in a regular neighborhood N(σ) of σ and which is transverse to
the ties. When τ ≺ σ, there is a natural linear map from the closed convex
cone Vτ to the closed convex cone Vσ which induces the inclusion map at
the level of the two subspaces ϕτ (Vτ ) and ϕσ(Vσ) of MF .

17. Automorphisms of the train track PL structure

We shall consider Thurston’s piecewise-linear structure of the space MF .
This structure is defined by an atlas. We note by the way that although
a PL structure is rigid in some sensenot a (G,X) structure in the usual
sense. Indeed, there is no such thing as a “universal PL manfiold” X in
each dimension equipped with an automorphism group G with the property
that any local isometry of X extends in a unique manner to an element of
G.
Let M be a nonnegative integer. We define a linear polytope V in RM to
be a subset of RM which is equal to the intersection of a finite number of
closed linear half-spaces. Let us stress on the fact that we are talking about
linear and not just affine half-spaces, so that V is R-homogeneous (invariant
by multiplication by elements of R). In particular, it is noncompact (unless
it is empty).
The dimension of a linear polytope V is the smallest dimension of a vector
space in which V embeds linearly.
We shall use the name polytope to denote a linear polytope.
Note that a linear polytope is closed and convex.
The relative interior of a convex set V in Rn is the topological interior of
V ∩ A in A, with A being the smallest (with respect to inclusion) affine
subset of Rn containing V .
The dimension of a linear polytope is the dimension of the smallest affine
subset of Rn that contains it.

Definition 17.1 (PL function). Let M and N be two nonnegative inte-
gers, let V be a finite union of polytopes V1, . . . , Vn in RM having the same
dimension. A function f : V → RN is said to be piecewise-linear (PL for
brevity) if f is continuous and if the restriction of f to the relative interior
of each of the polytopes V1, . . . , Vn is the restriction of a linear function from
RM to RN .

Note that in Definition 17.1, the union V of the polytopes V1, . . . , Vn is
equipped with the topology induced from that of RM . If V1, . . . , Vn are
disjoint, then the continuity of f boils down to the continuity of its restriction
to each set Vi, whereas if V1, . . . , Vn are not disjoint, a further condition is
required at the intersection points.
We now consider the PL structure on MF defined by the train track coor-
dinates.
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For each maximal recurrent train track τ , we let ψτ : Uτ → Vτ denote the
inverse of the homeomorphism ϕτ : Vτ → Uτ .
Let

A = {(Uτ ,ψτ ) |τ is a maximal recurrent train track }.

Theorem 17.2 (Thurston). The set A is an atlas of a PL structrure on
MF .

We shall define precisely what we mean by an automorphism of this train
track PL structure.
We shall need a precise description of the coordinate changes ψτσ = ψσ ◦ψ−1

τ
(defined on the appropriate subset of Vτ ) of the atlas A. This description is
given in Chapter 1 of [55] and we shall recall it here. For that, we introduce
the following notion.
Let τ be a maximal recurrent train track on S and let T = {τ1, . . . , τn} be
a family of maximal recurrent train tracks. We say that the family T is
adapted to τ if the following properties are satisfied:

(1) For each i = 1, . . . , k, the train track τi is maximal and recurrent.
(2) For each i = 1, . . . , k, τi ≺ τ .
(3) For every i and j satisfying 1 ≤ i < j ≤ k, the interiors of Uτi and

Uτj are disjoint. (Equivalently, for every such i and j, the images in
Uτ of the interiors of the convex cones Vτi ⊂ Vτ by the natural maps
induced by the relations τi ≺ τ) (2) are disjoint.)

Proposition 17.3. Let (Uτ ,ψτ ) and (Uσ,ψσ) be two coordinate charts in
A and let ψτ,σ be the corresponding coordinate change, defined on the subset
ψτ (Uτ ∩ Uσ) of Vτ .
For every point F in the interior of ψτ (Uτ ∩ Uσ), we can find a family
T = {τ1, . . . , τn} of train tracks which is adapted to τ and which furthermore
satisfies the following properties:

(1) τi ≺ σ for all i = 1, . . . , k.
(2) The union

⋃k
i=1 Uτi is a neighborhood of F is MF , and F belongs

to each set Uτi , for all i = 1, . . . , k.
(3) The linear maps that define the PL map ψτσ are constituted by the

linear maps induced by the relations τi ≺ τ and τi ≺ σ, and the
inverses of such maps.

We note that Property (3) of Proposition 17.3 implies that the restriction
of the coordinate change of coordinates ψτ,σ to the neighborhood N(F )
of F is linear on each subset Uτi of N(F ). Proposition 17.3 is the basic
technical result which implies that the coordinate changes in the atlas A are
piecewise-linear.
The study of the automorphisms of the train track PL structure will be
based on considerations on the singular set of a PL function.

Definition 17.4 (Singular set of a PL function). We use the notations of
Defintion 17.1. Let f : V → RN be a PL function. The singular set of f ,
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denoted by Sing(f), is the set of points x ∈ V1 ∪ . . . ∪ Vn such that f is not
linear in any neighborhood of x.
We note the following two observations:
1) It follows from Definition 17.1 that the set Sing(f) is a union of codimen-
sion one faces which are intersections of two sets in the collection of polytoes
{V1, . . . , Vn}.
2) If the polytopes V have dimension D, then Sing(f) has a natural structure
of a union of linear polytopes of dimension D− 1 in RM , and the restriction
of f to Sing(f) is PL.
Thus, there exists a nested sequence of subsets of V ,

Sing0(f) ⊃ Sing1(f) ⊃ . . . Singk(f),

where, by definition,
(N1) Sing0(f) = Sing0(f) = V \ Sing(f);
(N2) Sing1(f) = Sing(f);
(N3) for every integer i satisfying 2 ≤ i ≤ k, Singi(f) is the singular set of

the restriction of f to Singi−1(f);
(N4) the restriction of f to each component of Singk(f) is linear.
We note that for each 2 ≤ i ≤ k, Singi(f) is a codimension-1 subset of
Singi−1(f) (see Observation 2 above) and that k ≤ n.
Let f be a PL function defined on a set V as above. The associated se-
quence Sing0(f) ⊃ Sing1(f) ⊃ . . . Singk(f) defines a stratification of V ,
each stratum having a well defined codimension in V .
We shall call this stratification the flag induced by f on the set V , and we
shall denote this structure by Fl(f).
Definition 17.5 (Train track PL function). Let N be a nonnegative integer.
A function f : MF → RN is said to be a train track PL function if for every
x in MF , there exists a chart (Uτ ,ψτ ) belonging to the atlas A such that
the set Uτ contains x in its interior, such that the function f ◦ ψ−1

τ defined
on Vτ = ψτ (Uτ ) is PL, and such that there exists a coordinate change map
ψτσ belonging to the atlas A, having ψ(x) in the interior of its domain and
such that the singular sets of the restrictions of the maps f ◦ψτ and ψτσ to
the set Vτ coincide in a neighborhood of ψτ (x) in Vτ .
Let P be the set of train track PL functions on MF .
In some sense, the set P is the set of smoothest possible functions on MF
relatively to the atlas A.
Definition 17.6 (Automorphism of the PL structure). We shall say that
a homoemorphism h : MF → MF preserves the set P of train track PL
functions if for every element f of P, f ◦ h is also in P.
We denote by Aut(MF ,P) the group of homeomorphisms of MF that
preserve the set P.

Proposition 17.7. The action on MF of any element of the extended
mapping class group preserves the set of train track PL functions.
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Proof. Let h : MF → MF be a homeomorphism induced by an extended
mapping class, let N be a nonnegative integer and let f : MF → RN be
a function in P. For each x in MF , let (Uτ ,ψτ ) and ψτσ be respectively
a chart in A and a coordinate change map in A satisfying the properties
required in Definition 17.5. Then, τ ′ = h(τ) and σ′ = h(σ) are maximal
recurrent train tracks on S such that (h(Uτ ),ψτ ′) is a chart in A and ψτ ′σ′
is a coordinate change in A, which also satisfy the properties required in
Definition 17.5, in the neighborhood of the point h(x) instead of the point
x. This completes the proof. !

From Proposition 17.7, we have a homomorphism

Γ∗(S) → Aut(MF ,P).

The main result in the rest of this section (Theorem 17.10 below) says that
this homomorphism is an isomorphism, except in genus two, where the ho-
momorphism is surjective with kernel Z2. Before proving this theorem, we
need to establish a few more results.
A system of curves on S is the isotopy class of a collection of disjoint and
pairwise non-isotopic essential curves on S. Note that the number of ele-
ments in such a collection is bounded above by 3g − 3.
For every integer k satisfying 1 ≤ k ≤ 3g − 3, we denote by of Sk the subset
of S ′ consisting of isotopy classes of systems of curves that are representable
by a collection of curves of cardinality k.
Note that in particular S1 = S.
For each k satisfying 1 ≤ k ≤ 3g−3, let MFk ⊂ MF be the set of measured
foliation classes x having the following properties:
(C1) For each i satisfying 0 ≤ i ≤ k − 1, there does not exist any chart

(Uτ ,ψτ ) in A having x in the interior of its domain Uτ such that
there exists a coordinate change ψτψ having ψ(x) in the interior of
its domain, such that ψ(x) is on a stratum of dimension i of the flag
Fl(ψτσ).

(C2) There exists a coordinate chart (Uτ ,ψτ ) in A having x in the interior
of its domain and a coordinate change ψτψ having ψτ (x) in the interior
of its domain, such that ψ(x) is on a stratum of dimension k of the flag
Fl(ψτσ), and such that ψτ (x) is a convex combination of k elements
in the 1-stratum of Fl(ψτσ) with respect to the linear structure of Vτ
induced from its inclusion inclusion in RN .

Note that, in particular, MF1 ⊂ MF is simply the set of measured foliation
classes x such that there exists a coordinate chart (Uτ ,ψτ ) in A having x in
the interior of its domain and a coordinate change ψτψ having ψ(x) in the
interior of its domain such that x is on a stratum of dimension 1 of the flag
defined by the singular set Fl(ψτσ).

Proposition 17.8. For any k ≥ 0, any automorphism of (MF ,P) pre-
serves the set MFk.
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Proof. An automorphism of (MF ,P) acts on the set of flags of the coordi-
nate changes ψτσ of A, that is, it carries the flag of any coordinate change in
A to a flag of some coordinate change in A, and it preserves the properties
defining the elements of MFk, for each k ≥ 1. !
For each integer k satisfying 1 ≤ k ≤ 3g − 3, there is a natural inclusion
jk : (R∗

+)k × Sk ↪→ MF , defined by associating to each v ∈ (R∗
+)k and to

each element C ∈ Sk the equivalence class of a partial measured foliation F
with the following properties:

(1) the support of F is the union of disjoint annuli A1, . . . , Ak which are
foliated by closed leaves

(2) each annulus Ai is a regular neighborhood of a closed curve ci, where
c1, . . . , ck are the components of a system of curves representing the
isotopy class C;

(3) for 1 ≤ i ≤ k, the total transverse measure of the annulus Ai is equal
to the i-the coordinate of v.

We shall call a foliation on S representing an element of MF which is the
image of some element of S ′ by one of the maps jk an annular foliation.

Proposition 17.9. For every k ≥ 1, the image of (R∗)k ×Sk in MF is the
set MFk.

Proof. Let F ∈ MF be a measured foliation class which is in the image of
(R∗)k ×Sk. We must show that it satisfies Properties (C1) and (C2) above.
The proof uses a technique used in [55] Chapter 1. The idea is as follows. We
start by representing F by a system of weights on a train track consisting
of a union of k disjoint simple closed curves, representing the element of
(R∗)k × Sk that defines F . We can pinch this system of curves along a
system of disjoint arcs having their endpoints on these curves in order to
obtain a maximal recurrent train track τ such that F is in the interior of the
linear polytope Vτ . A pinching operation is represented in Figure 15. By
choosing a different system of arcs, we can obtain a maximal recurrent train
track σ such that F is in the interior of the linear polytope Vσ, and we can
choose this new system of arcs so that F is in the codimension-k skeleton of
the flag Fl(ψτσ). This uses the description of the coordinate changes that is
contained in Proposition 17.3 above.
Conversely, it is easy to see that if a measured foliation satisfies Properties
(C1) and (C2), then it is in the image of (R∗)k × Sk.

!

Theorem 17.10. Suppose that S is not the closed surface of genus 2. Then,
the homomorphism

Γ∗(S) → Aut(MF ,P)
is an isomorphism. In the special case where S is a closed surface of genus
2, this isomorphism is surjective, and its kernel is Z2 generated by the hy-
perelliptic involution.
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Proof. Let f be an element of Aut(MF ,P). By Proposition 17.8, f pre-
serves the subset MF1 of MF . Proposition 17.9 says in particular that
MF1 is the natural image of R∗

+×S in MF , that is, it is the set of measured
foliation classes that are representable by foliations all whose nonsingular
leaves are closed curves homotopic to a single simple closed curve. Thus,
MF1 is in natural one-to-one correspondence with the set R∗

+×S of isotopy
classes of weighted essential curves on S. Since f acts linearly on rays, it
acts on the set S of isotopy classes of essential curves, which is the set of
verices of the curve complex C(S). Therefore, f defines in a natural manner
a map from the vertex set of the curve complex C(S) to itself, and it follows
from the fact that f is a homeomorphism that the map defined on C(S) is
a bijection.
Similarly, by Proposition 17.8, for each k = 2, . . . , 3g−3, f preserves the set
MFk of MF which, again by Proposition 17.9, can be naturally identified
with the set Sk of isotopy classes of weighted systems of curves which have
k components, and f induces also a map of the set of (k − 1)-simplices of
C(S). Thus, the bijection induced by f on the vertex set of C(S) extends
naturally to a simplicial automorphism of C(S).
By the result of Ivanov (Theorem 6.2), the action of f on C(S) is induced
by an element γ of the extended mapping class group of S, and it is clear
from the definitions of these actions that the restriction of f and of the
extended mapping class γ on the image of {1} × S (and, even, of {1} × S ′)
in MF coincide. Since f and γ are linear on rays of MF , these actions
coincide on the subset R∗

+ × S. Since the image of R∗
+ × S in MF is dense

and since the actions of f and γ on MF are continuous, they coincide on
MF . Thus, each automorphism of (MF ,P) is induced from an extended
mapping class. This proves the surjectivity of the homomorphism Γ∗(S) →
Aut(MF ,P). The statement about the kernel can be deduced from the
fact that the homomorphism from the extended mapping class group to the
automorphism group of the complex of curves is injective except in genus
two, in which case the kernel is Z2. !

Figure 15. The pinching operation that is used in the proof
of Proposition 17.9.
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18. The symplectic structure of MF

In this section, S is also a closed surface. Let τ be a maximal recurrent train
track on S. We use the notations established in Section 16. In particular,
RN is the vector space with basis the set of edges {e1, . . . , eN} of τ .
Let F (τ) be the vector subspace of Rn defined by the switch equations

xi = xj + kk for every switch of τ,

where
where, as above, xj and xk denote the weights at the two edges that abut
from the same side, and xi is the weight on the edge that abuts from the
other side on that switch.
Note that the cone Vτ defined in Section 16 is the cone of vectors in F (τ)
whose coordinates are all nonnegative. The vector space F (τ) can be seen at
each point as the tangent space to MF at that point, in the chart associated
to the train track τ .
There is a bilinear form 〈., .〉 defined on each vector space F (τ), whose
existence has been pointed out by Thurston, and we now recall its definition.
The surface S being oriented, we can talk, at each switch of τ , of the half-
edge abutting from the left and the one abutting from the right on that
switch, with respect to an observer sitting between the two edges abutting
from the same side, and looking at the switch. Let al and ar denote respec-
tively these two half-edges.
Let X = (x1, . . . , xN ) and Y = (y1, . . . , yN ) be two elements in F (τ) ⊂ RN .
The product 〈X,Y 〉 is defined as

〈X,Y 〉 =
1
2

∑
(xlyr − xryd)

where the sum is over all the switches of τ , and where for each switch, the
indices l and r are the weights induced by the corresponding vectors on the
edges al and ar respectively, that abut from the same side on that switch.
The form 〈., .〉 associated to a maximal recurrent train track is closed and
nondegenerate, and it defines a PL symplectic structure on MF , which is
invariant by the train track PL coordinate changes, that is, the coordinate
changes of the atlas A defined in Section 16. In particular, this form is
invariant by the action of the mapping class group Γ(S).
Some of the properties of this form are studied in the papers [56], [57] and
[58] and in the monography [61].
There is a natural homomorphism from the mapping class group Γ(S) into
the symplectomorphism group Sym(MF) of the space (MF , 〈., .〉). We
ask the question of characterizing the symplectomorphism group Sym(MF)
and of descrfibing the image and the kernel of the natural homomorphism
Γ(S) → Sym(MF).
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19. Automorphisms of the space of unmeasured foliations

In this section, as in the preceding two sections, we take the surface S
to be closed. In [59] there is a complete treatment of the result on the
automorphism group that we prove here in the general case of surfaces with
punctures.
Let UMF = UMF(S) be the space obtained as the quotient of MF(S)
obtained by identifying two elements of MF whenever these elements can
be represented by topologically equivalent foliations, that is, forgetting the
transverse measure.
We note that Masur and Minsky showed that the complex C(S), equipped
with its natural simplicial metric, is Gromov hyperbolic (cf. [46]), and that
Klarreich identified the Gromov boundary of C(S) as the subspace of UMF
consisting of equivalence classes of minimal foliations (that is, foliations in
which every leaf, including the singular ones, is dense) (cf. [35]).
We call UMF the space of unmeasured foliations on S.
The extended mapping class group Γ∗(S) acts naturally by homeomorphisms
on UMF .
The space UMF , equipped with the quotient of the topology of MF , is
non-Hausdorff. We shall analyze precisely this non-Hausdorffness, and we
shall exploit it in the proof of the Theorem 19.1 on the rigidity of the action
of Γ∗ on UMF .
We denote by Homeo(UMF) the group of homeomorphisms of UMF .
The following result says that in some sense the action on UMF of the
group Homeo(UMF) coincides on a dense subset of UMF with the action
of the extended mapping class group Γ∗(S) on that space.

Theorem 19.1 (cf. [59]). Let S be a closed surface of genus ≥ 2. Then,
there exists a dense subset D of UMF which is invariant by the group
Homeo(UMF) and such that if h is any homeomorphism of UMF , then
there exists an element h∗ of Γ∗(S) such that the restriction on D of the
actions of h and h∗ coincide.
Suppose furthermore that S is not the closed surface of genus 2. Then, if h1

and h2 are distinct elements of Γ∗(S), their induced actions on D are differ-
ent. In particular, the natural homomorphism from Γ∗(S) to Homeo(UMF)
is injective. In the case of genus two, the kerbel of the homomorphism from
Γ∗ to the homeomorphism group of D is Z2.

The set D in the statement consists of the natural image in UMF of the
set S ′ of systems of curves on S.
We shall give all the ingredients of the proof of Theorem 19.1.
The proof involves the notion of adherence, and we start by defining this
notion.
Let X be a topological space.
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Definition 19.2 (Adherence). Let x and y be two points in X. We say
that x is adherent to y in X if every neighborhood of x intersects every
neighborhood of y.

Definition 19.3 (Adherence set). Let x be a point in X. The adherence
set of x is the set of elements in X which are adherent to x.

Definition 19.4 (Complete adherence set). A subset Y of X is a complete
adherence set in X if for any two elements x and y of Y , x is adherent to y
in X.

Definition 19.5. Let x be a point in X. The adherence number N (x) of x
is the element of N ∪ {∞} defined as

N (x) = sup{Card(A) | x ∈ A and A is a complete adherence set in X}.
Given two partial measured foliations F and G on S with disjoint supports,
their union can be naturally considered as a (partial) measured foliation on
S, which we shall denote by F + G. We shall say that F is a subfoliation of
F + G and that the foliation F + G (or any foliation equivalent to F + G)
contains the foliation F (or any foliation equivalent to F ).

Lemma 19.6. Let F and G be two measured foliations on S. Then, the
following are equivalent:

(1) i(F,G) = 0.
(2) F ∼ F ′ and G ∼ G′, where F ′ and G′ are partial measured foliations

on S such that F ′ = F1 +F2 and G′ = G1 +G2 where F1 and G1 are
equal as topological foliations, and where F2 and G2 have disjoint
supports. (Some of the partial foliations F1, F2, G1 and G2 may be
empty.)

(3) [F ] is in the adherence set of [G] in UMF .

Proof. The equivalence between (1) and (2) is well-known. Let us prove
that (2) implies (3). Let F ′ and G′ be partial measured foliations as in (2).
For the proof, we can assume that all four measured foliations, F1, F2, G1

and G2, are not empty. (In the contrary case, the proof is even simpler.)
We then consider the measured foliation F ′ + G2, and we let [F ′ + G2]
be its equivalence class in MF . For any sequence tn of positive numbers
convering to 0, the sequences [F ′ + tnG2] in MF converges to [F ′]. For the
corresponding elements in UMF , we have [F ′ + tnG2] = [F ′ + G2] for all n.
This shows that in UMF , [F ′ + G2] is in every neighborhood of [F ′] (recall
that a set in UMF is open if and only if its inverse image in MF is open). By
the same argument, [G′+F2] is in every neighborhood of [G′] in UMF . Since
[G′+F2] = [F ′+G2] in UMF , [F ′] is adherent to [G′]. We now prove that (3)
implies (1). The proof is by contradiction. Suppose that i(F,G) *= 0. Then,
by the continuity of the intersection function, we can find neighborhoods
N([F ]) of [F ] in MF and N([G]) of [G] in MF such that i(x, y) *= 0 for all
x in N([F ]) and for all y in N([G]). We can furthermore suppose that N([F ])
and N([G]) are saturated sts with respect to the equivalence relation on MF
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which identifies two equivalence classes of measured foliations whenever they
can be represented by the same topological foliation. The images of N([F ])
and of N([G]) in UMF are disjoint neighborhoods of the images of F and
of G in that space. This shows that [F ] is not in the adherence set of [G] in
UMF . !
We shall use the following proposition, which is a direct consequence of the
equivalence (1)⇔(2) of Lemma 19.6.

Proposition 19.7. Let F be a measured foliation and let [F ] be its image
in UMF . Then, the adherence set of F is the set of equivalence classes in
UMF of foliations G which are of the form G1 + G2 where G1 is a sum of
components of F and where G2 is a partial measured foliation whose support
is disjoint from the support of a representative of F by a partial measured
foliation.

We denote by j : S ′ ↪→ UMF the natural inclusion induced from the map
that we considered in Section 17 above that associates to each weighted
system of curves the corresponding annular measured foliation.
We shall also call a foliation on S representing an element of UMF which
is the image of some element of S ′ by the map j an annular foliation.

Proposition 19.8. Let F be a measured foliation on S and let [F ] denote
the corresponding element of UMF . Then, N ([F ]) = 2q − 1, where q is the
maximum, over all measured foliations G containing F , of the number of
components of G.

Proposition 19.9. If x ∈ UMF is the class of an annular foliation, then
N (x) = 2q − 1, with q = 3g − 3. Furthermore, if y ∈ UMF is not the class
of an annular foliation, then N (y) < N (x).

Proof. This follows from Proposition 19.8, and from the fact that if F is
annular, then the maximal number of components of a measured foliation
containing it is 3g − 3, and if F is not annular, the maximal number of
components of a measured foliation G containing it is < 3g − 3. !
The following is a consequence of Proposition 19.9 and of the fact that any
homeomorphism of UMF preserves adherence numbers of points.

Corollary 19.10. Any homeomorphism of UMF preserves the image of S ′

in UMF by the map j.

Let us now draw a another consequence of Proposition 19.9 which will be
useful in the proof of Proposition 19.12 below.

Corollary 19.11. If g *= g′, then UMF(Sg) is not homeomorphic to UMF(Sg′).

As in the preceding section, for every k ≥ 1, we denote by of Sk the subset of
S ′ consisting of homotopy classes that are representable by pairwise disjoint
and non-homotopic k simple closed curves.
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Proposition 19.12. For any k ≥ 1, any homeomorphism of UMF pre-
serves the image of Sk by the map j : S ′ → UMF .

Proof. Let f be a homeomorphism of UMF . By Corollary 19.10, f preserves
the subset j(S ′) of UMF . Now j(S ′) is the disjoint union of the spaces
j(Sk) with k = 1, . . . 3g − 3. It suffices to prove that if m *= n and for
any [F ] ∈ j(Sm) and [G] ∈ j(Sn), we have f([F ]) *= [G]. By Proposition
19.7, the adherence set A([F ]) of [F ] (respectively A([G]) of [G]) in UMF
is homeomorphic to a finite union of spaces which are all homeomorphic
to a space UMF(S′) (respectively UMF(S′′)) where S′ and S′′ are (not
necessarily connected) subsurfaces of S which are the complement of the
support of partial foliations F and G respectively, representing [F ] and [G]
respectively. Since the number of components of [F ] and [G] are distinct,
then if g′ and g′′ are respectively the genera of S′ and S′′, we have g′ *= g′′.
By Corollary 19.11, A([F ]) is not homeomorphic to ([G]). Thus, f cannot
send [F ] to [G], which completes the proof of the proposition. !

Now we can prove Theorem 19.1.
Let D = j(S ′) ⊂ UMF and let h be a homeomorphism of UMF . Since h
preserves the set j(S1) = j(S), h induces a map from the vertex set j(S) of
C(S) to itself. Since h is a homeomorphism, the map on C(S) is bijective.
Furthermore, since, for each k ≥ 2, h preserves the set j(Sk) in UMF , this
action on the vertex set of C(S) can be naturally extended to a simplicial
automorphism h′ of C(S). If S is not the closed surface of genus two, it
follows from the theorem of Ivanov (Theorem 6.2) that the automorphism
h′ is induced by an element h′′ of the extended mapping class group Γ∗(S).
The element h′′ acts on UMF , and, by construction, the action induced on
D by this map is the same as that of h. This completes the proof of the
existence part of Theorem 19.1. The result about the kernel is a consequence
of the statement in Ivanov’s theorem about the kernel of the homomorphism
from the extended mapping class group to the automorphism group of the
curve complex.

Part 4. AUTOMORPHISMS OF TEICHMÜLLER SPACES

The rigidity theorems that we present in the rest of these notes concern Te-
ichmüller space equipped with its complex-analytic structure, with its Te-
ichmüller metric and with its Weil-Petersson metric. They say that (except
in the case of a small number of special surfaces) the automorphism group
of Teichmüller space coincides with the extended mapping class group. This
shows in particular that Teichmüller space is highly inhomogeneous, which
is one of the features that make this space so interesting. For instance, the
rigidity results imply that a Fenchel-Nielsen deformation, with a fixed twist
angle, does not induce a holomorphic automorphism, neither an isometry
for the Teichmüller metric or of the Weil-Petersson metric, except in the
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case of a full twist (where the Fenchel-Nielsen deformation is induced from
the action of mapping class, viz. a Dehn twist).5
Let us note that various generalizations of the rigidity results that we present
here, which apply to infinite-dimensional Teichmüller spaces, have been ob-
tained by C. Earle and F. Gardiner (see [12]), by V. Markovic (see [42]) and
by N. Lakic (see [37]); see also the expositions in [17] and [18].
Before stating the results, I will give a short exposition of classical Te-
ichmüller theory.

20. Teichmüller space

We shall deal, as it is usually done in this setting, with punctured surfaces
rather than with surfaces with boundary. Thus, S = Sg,n denotes here
an oriented connected surface of finite type, of genus g ≥ 0 with n ≥ 0
punctures. In particular, this will spare us the technicalities of conformal
structures with boundary.
To avoid talking about very special cases, we shall assume that the surface
S is not a sphere with 0, 1 or 2 punctures.
The Teichmüller space of S is a space of equivalence classes of conformal
structures on S.
We recall that a conformal structure on S is a maximal atlas {(Ui, zi)}i∈I
where, for each i ∈ I, Ui is an open subset of S and zi a homeomorphism
from Ui to an open subset of the complex plane C, satisfying

⋃
i∈I Ui = S,

and such that any map of the form zi ◦ z−1
j , defined on each conected com-

ponent of zj(Ui ∩ Uj), is the restriction of a holomorphic map of C. We
shall consider only conformal structures on S such that each puncture has a
neighborhood which is biholomorphically equivalent to a punctured disk in
C.6 By the classical “Removable Singularity Theorem”, the last condition
means that the conformal structure on S is obtained from a conformal struc-
ture on a closed surface of genus g by removing n points. Thus, a conformal
structure in our sense can also be considered as a conformal structure on a
closed surface, with a certain number of distinguished points.
We note that since any conformal map from C to itself is orientation-
preserving, a conformal structure on S induces an orientation on that sur-
face. We shall only consider conformal structures that induce on S the
orientation that we started with.
A surface equipped with a conformal structure is called a Riemann surface.
We define a distance between conformal structures, and for that we use the
notion of a quasiconformal homeomorphism between Riemann surfaces. Be-
fore talking about quasiconformal homeomorphisms, we recall that a quadri-
lateral in a Riemann surface S is an embedded closed disk with two distin-
guished disjoint arcs in its boundary. We call the distinguished arcs the

5It is known however that the Fenchel-Nielsen flow is real-analytic.
6Remember that in the neighborhood of a puncture, the surface could be, from the

complex-analytic point of view, either a disk or an annulus.
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vertical sides of the quadrilateral. Any quadrilateral Q in S is equipped
with a conformal structure with boundary induced from that of S. By
the Riemann Mapping Theorem, there exists a unique positive real number
Mod(Q) and a conformal homeomorphism φ from Q to the rectangle R in
the Euclidean plane R2 with vertices at (0, 0), (Mod(Q), 0), (Mod(Q), 1) and
(0, 1), such that φ sends the vertical sides of Q to the vertical sides of R
(that is, the sides of length 1, see Figure 16). The value Mod(Q) is called
the modulus of Q (and of R).

Figure 16. There is a conformal map from the quadrilateral
Q on the left to the Euclidean rectangle on the right, send-
ing the vertial sides of Q (which are drawn in bold lines) to
the vertical sides of the Euclidean rectangle. The Euclidean
rectangle is unique up to homothety.

Let G and H be Riemann surfaces and let f : G → H be a homeomor-
phism. The homeomorphism f transforms any quadrilateral in G into a
quadrilateral in H, and it is said to be quasiconformal if we have

K(f) = sup
Q

Mod(f(Q))
Mod(Q)

< ∞,

where the supremum is taken over all quadrilaterals Q in G. The value
K(f) is called the quasiconformal dilatation of f . For every K ≥ K(f),
f is said to be K-quasiconformal homeomorphism. From the definition, it
follows that the inverse of a K-quasiconformal homeomorphism is also a
K-quasiconformal homeomorphism.
If f is conformal, it preserves the moduli of quadrilaterals, and its quasi-
conformal dilatation is equal to one. Conversely, a 1-quasi-conformal home-
omorphism is a conformal homeomorphism. Thus, the quasiconformal di-
latation of a map is a measure of the defect in conformality of that map.
We note that there are several other ways of defining quasiconformality. We
refer to [3] and to [17] for the various definitions and for their equivalence. In
particular, if the homeomorphism f is of class C1, then, at any point of the
surface, f transforms an infinitesimal circle into an infinitesimal ellipse, and
a measure of the defect in conformality of f at this point is the ratio of the big
axis to the small axis of the image infinitesimal ellipse. The quasiconformal
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dilatation of f is then equal to the supremum over the surface S of these
ratios at every point.
Now we define the Teichmüller space of S. This definition involves the
choice of a base Riemann surface, and Teichmüller space will be seen as
a space of equivalence classes of quasiconformal homeomorphisms from this
base Riemann surface to other Riemann surfaces. Although the fact that we
have to make a choice of a base surface may seem unnatural, the complex-
theoretic point of view of Teichmüller theory often involves such a choice.
For instance, there is a very useful parametrization of Teichmüller space by
the space of Beltrami differentials on the base Riemann surfaces. Likewise,
the space of quadratic differentials on the base Riemann surface provides a
useful ray structure on its Teichmüller space, and so on.
Thus, in this section, we consider that our surface S is a Riemann surface.

Definition 20.1 (Teichmüller space). The Teichmüller space T (S) of S
is the space of equivalence classes of pairs (S′, f) where S′ is a Riemann
surface and f : S → S′ is a quasiconformal homeomorphism and where two
pairs (S1, f1) and (S2, f2) are considered to be equivalent if there exists a
conformal homeomorphism g : S1 → S2 such that the map f1 ◦ f2 : S → S
is homotopic to the identity.

A pair (S′, f) is usually called a marked Riemann surface, and f (or its
homotopy class) is called the marking of S.
We shall sometimes denote the equivalence class of (S′, f) by [S′, f ]. The
basepoint of Teichmüller space is the equivalence class of the pair (S, Id).
The equivalence class of this basepoint will simply be denoted by [S].
Of course, by pulling back the conformal structure on S′ to a conformal
structure on S, one can also see the elements of Teichmüller space as equiv-
alence classes of conformal structures on the base surface S (and the marking
is implicit).
There is a natural action of the mapping class group Γ(S) on Teichmüller
space. To see this action, one first needs to know that in any homotopy class
of homeomorphisms of S, there is a quasiconformal homeomorphism. (Note
that this uses the fact that the punctures of S are also punctures in the
conformal sense, which was part of our definition of a conformal structure
on S). Then, given an element γ in Γ(S), it transforms the equivalence class
of a pair (S′, f) into the equivalence class of the pair (S′, f ◦ g−1) where g
is any quasiconformal homeomorphism of S in the class γ.
The quotient of the action of Γ(S) on Teichmüller space is Riemann’s moduli
space.
In fact, there is an action of the extended mapping class group Γ∗(S) on
Teichmüller space, which is defined as follows. If γ is an element of Γ∗(S)
which is not in Γ(S), we take an orientation-reversing quasiconformal home-
omorphism g representing γ, and we define the image by γ of the equivalence
class of a pair (S′, f) to be the equivalence class of the pair (S′, jS ◦ f ◦ g−1)
where S′ is the mirror-image of the Riemann surface S′, that is, the Riemann
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surface obtained by composing with complex conjugation each coordinate
chart of the atlas defining the Riemann surface S′, and where jS : S′ → S′

is the canonical map between a surface and its mirror image (see [1] p. 93).
In loose terms, in the context of Teichmüller spaces, we can think of the
extended mapping class group as the mapping class group extended by the
involution which sends each Riemann surface to its mirror image. (To be
more precise one should be careful about markings and orientations.)
By a result attributed to Fricke, the extended mapping class group acts
properly discontinuously on Teichmüller space, and this action is faithful
except in the cases (g, n) = (0, 3), (0, 4), (1, 1), (1, 2) or (2, 0). The reason
why this result fails for (g, n) = (0, 3) is that the Teichmüller space of S0,3

is reduced to a point, whereas the mapping class group of that surface is
not the trivial group. For the other exceptional surfaces, the reason is the
existence of the hyperelliptic involutions, which act trivially on Teichmüller
space.
We shall deal in the next sections with several structures of Teichmüller
space, and we note right away that there is an instance where Teichmüller
space can be easily described (without being reduced to a point), namely,
the case where the surface S is the torus S1. Indeed, a torus, equipped with a
complex structures, can always be represented as the quotient of the complex
plane C by a lattice generated by two translations z 6→ z+w1 and z 6→ z+w1,
where w1 and w2 are two complex numbers that are independent over R.
By conjugating the lattice by multiplication by a complex number, we end
up with representing in a unique manner any equivalence class of complex
structures on the torus by a lattice generated by the two translations z 6→
z + 1 and z 6→ z + w, where w is a complex number whose imaginary value
is > 0. This gives a one-to-one correspondence between the Teichmüller
space of the torus and the upper half-plane H in C. It turns out that
this parametrization of T (S1) by the upper half-plane is exact in several
respects. For instance, the complex analytic structure of Teichmüller space
(which we shall discuss in the next section) coincides with the complex
analytic structure of H induced from its inclusion in the complex plane, and
the Teichmüller metric of the Teichmüller space (which we shall discuss in
Section 22 below) coincides with the Poincaré hyperbolic metric on H.
For surfaces of higher genus, there are no such simple descriptions of the
complex analytic and the metric structures of their Teichmüller spaces.

21. Automorphisms of the complex structure of Teichmüller
space

This section deals with the complex analytic structure of Teichmüller space.
The bases of this theory are highly non-trivial, partly because they involve
some deep and technical results in analysis. Therefore, this attempt to
present this theory in a few lines in necessarily superficial, but we need to
do it so that the theorems below are intelligible, and we hope that this
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presentation will incite the interested nonspecialist reader to go through the
original papers.
Ahlfors and (independently) Rauch defined a natural complex analytic struc-
ture on Teichmüller space T (Sg,n) which make this space a complex analytic
manifold of complex dimension 3g − 3 + n and, more precisely, holomorphi-
cally equivalent to a bounded domain in C3g−3+n.
There is a way of presenting the complex structure of Teichmüller space
which is quite natural to state if one is satisfied with loose terms, and this
is the following. It is well-known that each Riemann surface can be rep-
resented by a complex algebraic curve, more precisely, the surface can be
described as the zero set of a polynomial in two variables with complex co-
efficients. By varying the coefficients, one can deform the Riemann surface,
and this gives the idea of the existence of a complex structure on the space
of Riemann surfaces. In fact, there is no marking involved in this point of
view, and one describes in this way a complex structure on Riemann’s mod-
uli space rather than on Teichmüller space, which is fine since Teichmüller
space is a branched covering of Riemann’s moduli space, and therefore the
complex structure on Riemann’s moduli space lifts to a complex structure
on Teichmüller space.
The complex structure that we describe next coincides with the one we just
mentioned, although the proof of this fact is not an easy matter. Let us
also note that the complex structure on Teichmüller space that we shall
describe is natural in the sense that it makes the period functions of the
abelian differentials on Riemann surfaces to be holomorphic functions on
Teichmüller space.
The complex structure of Teichmüller space is usually described via a repre-
sentation of Riemann surfaces by Beltrami differentials on the base Riemann
surface. The complex structure on T (Sg,n) is then induced from a natural
complex structure of the space of Beltrami differentials on S, see e.g. [1].
We recall that a Beltrami differential µ on S is a tensor of type (−1, 1), that
is, an invariant object which in the local holomorphic coordinates of S is of
the form µ(z)dz/dz, where µ is an essentially bounded measurable function.
The invariance means that if w is another local holomorphic coordinate
and if in that coordinate the Beltrami differential is written as ν(w)dw/dw,
then, at the overlap between the two coordinate charts, we have µ(z)dz/dz =
ν(w)dw/dw.
We note that given such a Beltrami differential, the real-valued function |µ|
which a priori is defined only in local coordiantes, is well defined on the
surface S, and the essential boundedness of µ simply says that the function
|µ| on S is essentially bounded.
It turns out that Teichmüller space can be considered as a space of Bel-
trami differentials on S up to a certain equivalence relation. The idea of
representing conformal structures by Beltrami differentials is the following.
Given a Beltrami differential µ on S, one obtains a new conformal structure
by means of a quasiconformal mapping f which is a solution of the following
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differential equation, called the Beltrami equation with coefficient µ,

fz = µfz.

In other words, the new conformal structure is obtained by composing the
coordinate charts of the original structure with maps induced by this qua-
siconformal homeomorphism f . The Beltrami differential µ is called the
complex dilatation of f . The invariance property of µ ensures that the equa-
tion fz = µfz, which is a priori defined in coordinate charts, is well defined
on the surface S.
There is a natural notion of equivalence between Beltrami differentials,
which is defined in such a way that equivalent conformal structures on S are
represented by equivalent Beltrami differentials.
The basepoint S is obtained by taking µ = 0, since the equation fz = 0
implies that f is conformal.
The space of Beltrami differentials on S has a natural structure of a Banach
complex space, and this structures induces the complex analytic structure
on T .
Now we must say a few words about quadratic differentials.
We recall that a holomorphic quadratic differential q on the base Riemann
surface S is a tensor of type (2, 0), that is, an invariant object that has an
expression q(z)dz2 in each holomorphic local chart, where q(z) is a holomor-
phic function of z, the holomorphic local coordinate in that chart. Invariance
of q means that if w is the local coordinate in another chart and if a local
expression of q in that chart is p(w)dw2, then at the overlap between the two
charts we have q(z)dz2 = p(w)dw2 or, equivalently, q(z)(dz2/dw2) = p(w).
The norm of a quadratic differential q on S is defined as the surface integral

‖q‖ =
∫

S
|q(z)||dzdz|.

(It is a consequence of the definition of a quadratic differential that the
expression under the integral sign makes sense in local coordinates).
A quadratic differential is said to be in L1 if its norm is finite. A holomorphic
quadratic differential is in L1 if and only if it is meromorphic at the punctures
(or, rather, on the Riemann surface obtained by filling in the punctures) and
has at worst simple poles there.
The vector space Q(S) of L1 holomorphic quadratic differentials on S is a
complex Banach space, and by the Riemann-Roch therem, its dimension is
3g−3+n. (This uses the fact that the quadratic differential is meromorphic
with at worst simple poles at the punctures). There is an important holo-
morphic embedding of Teichmüller space into Q(S), which was discovered
by Bers, and whose definition uses the notion of Schwarzian derivative. We
recall that given a locally injective holomorphic map f : Ω → CP1, where
Ω a domain contained in the Riemann sphere S2 $ CP1, its Schwarzian
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derivative Sf is given by the formula

Sf =
f ′′′

f ′ − 3
2
(f ′′

f ′
)2

.

There are several ways in which the notion of Schwarzian derivative is well-
behaved under Möbius transformation. First of all, in some precise sense,
Sf is a measure of how far f is from being the restriction of a Möbius
transformation. Furthermore, given a subgroup G of PSL(2, C) acting prop-
erly discontinuously on Ω, the Schwarzian derivative Sf gives a well-defined
quadratic differential on the quotient Riemann surface Ω/G. We refer the
reader to the book by Lehto [38] and to the paper by Thurston [68] for
information on this subject. The image of T (Sg,n) by its embedding into
Q(S) is a bounded open subset of Q(S), see e.g. the books by Ahlfors [1]
and by Fletcher and Markovic [17].
There is an identification between the holomorphic tangent space to Te-
ichmüller space at any point x in that space and a vector space of Beltrami
differentials on a surface X representing x, modulo the Beltrami differen-
tials that are “infinitesimally trivial”, that is, Beltrami differentials that are
tangent to trivial infinitesimal deformations. It turns out that a Beltrami
differential µ is trivial if and only if it satisfies

∫
X µq = 0 for all holomorphic

quadratic differentials q on the X.
The cotangent space to T (Sg,n) at x is identified with the space of L1 holo-
morphic quadratic differentials, with a natural pairing between tangent and
cotangent spaces given by

(µ, q) 6→
∫

X
µq.

We note that since in local coordinates, µ has the expression µ(z)dz/dz and
since q has an expression q(z)dz2, than µq has the expression µ(z)q(z)dzdz,
that is, µ(z)q(z)|dz|2, which is an object we can integrate on the surface X.
This identification of the cotangent bundle of Teichmüller space is important
because it turns out that the Teichmüller and the Weil-Petersson metrics are
best decribed by co-norms on the cotangent spaces, rather than by norms
on tangent spaces. We shall see this fact more precisely in the next two
sections.
The extended mapping class group Γ∗(S) acts on Teichmüller space equipped
with its complex structure as a group of biholomorphic or anti-biholomorphic
homeomorphisms. More precisely, an element of the mapping class group
acts as a biholomorphic homeomorphism of T = T (Sg,n) (note that a bijec-
tive holomorphic map is necessarily biholomorphic), and an element of the
extended mapping class group which is not in the mapping clas group acts
as an anti-holomorphic homeomorphism.
Let Holo(T ) be the group of holomorphic automorphisms of T and let
Holo∗(T ) be the group of holomorphic or anti-holomorphic automorphisms
of T .
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In 1971, H. L. Royden proved that for closed surfaces of genus ≥ 2, the
natural map Γ(S) → Holo(T ) is onto (cf. Royden [62]). Earle and Kra [14]
extended Royden’s result and they studied all surfaces with punctures. We
summarize these rigidity result in the following:

Theorem 21.1 (cf. Royden [62] for the case of closed surfaces, and Earle
and Kra [13] for the remaining cases). Let S be a surface which is not a
sphere with at most four punctures, a torus with at most two punctures or
a closed surface of genus 2. Then, the natural homomorphisms

Γ∗(S) → Holo∗(T )

and
Γ(S) → Holo(T )

are isomorphisms.

The proofs of these results that were given by Royden and by Earle and Kra
are based on the fact that the holomorphic and anti-holomorphic automor-
phisms of T are the isometries for the Teichmüller metric on that space, and
therefore, the rigidity results follow from the corresponding rigidity results
for the Teichmüller metric. The Teichmüller metric is a Finsler metric and
the proof of the rigidity result for this metric is based on an analysis of
the smoothness of the unit sphere of that metric at each tangent space (see
Section 22 below).
In particular, for the cases that are excluded in the statement of Theorem
21.1, the situation is the same as the one of the isometry group of Teichmüller
metric, which we summarize in Theorem 22.2 below.
As these remarks suggest, the results follow from local results. In fact,
Earle and Kra proved the following stronger rigidity result that concerns
local holomorphic maps between Teichmüller spaces. Let Sg,n and Sg′,n′ be
two surfaces neither of which is a sphere with at most four punctures, a torus
with at most two punctures or a closed surface of genus 2 and suppose that
there exists a holomorphic map f from an open set U of T (Sg,n) onto an
open set of T (Sg,n). Then, (g, n) = (g′, n′) and the map f is the restriction
to U of the image of an element of the extended mapping class group of Sg,n

in the corresponding group of biholomorphic maps of Teichmüller space.
This result generalizes a theorem by D. B. Patterson [60] which says that if
(g, n) *= (g′, n′) there cannot exist any biholomorphic homeomorphism be-
tween the Teichmüller spaces T (Sg,n) and T (Sg′,n′), except for the following
biholomorphic homeomorphisms:

T (S2,0) $ T (S0,6),

T (S1,2) $ T (S0,5),

T (S1,0) $ T (S1,1) $ T (S0,4).
In particular, there are Teichmüller spaces which have the same dimension
that are not biholomorphically equivalent.
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A basic ingredient in the approaches of Royden and of Earle-Kra is the
fact that the Teichmüller metric of Teichmüller space coincides with the
Kobayashi metric of that space. Kobayashi metrics have the property that
the biholomorphic and anti-biholomorphic homeomorphisms of the spaces
on which they are defined are isometries of these metrics. In particular,
the biholomorphic and anti-biholomorphic homeomorphisms of T (Sg,n) are
isometries of the Kobayashi metric. Thus, to study the group of biholomor-
phic and anti-biholomorphic homeomorphisms of Teichmüller space, one is
reduced to study isometries of its Kobayashi metric. Royden and Earle-Kra
proved that the natural homomorphism from the extended mapping class
group in the group of isometries of the Teichmüller metric is an isomorphism
(except in the excluded cases mentioned above). We shall discuss this in the
next section.

22. Isometries of the Teichmüller metric

We first recall the definition of the Teichmüller metric.

Definition 22.1 (The Teichmüller metric). The Teichmüller metric on Tg,n

is the function dT : Tg,n × Tg,n → R which associates to each pair of equiva-
lence classes of marked Riemann surfaces G = [S1, f1] and H = [S2, f2] the
quantity

dT (G,H) =
1
2

inf
f

log K(f),

where the infimum is taken over all quasiconformal homeomorphisms f :
S1 → S2 such that f2 is homotopic to f ◦ f1.

We now recall the definition of the Kobayashi pseudo-metric7 dK associated
to a complex manifold X.
Let D be the unit disk in C equipped with its Poincaré metric.
One first defines a function d′K : X × X → R by the formula

d′K(x, y) = inf
f,a,b

dD(a, b)

for x and y in X, the infimum being taken over all holomorphic maps f :
D → X and over all points a and b in D satisfying f(a) = x and f(b) =
y. The map d′K does not necessarily satisfy the triangle inequality, and
the Kobayashi semi-metric dK is defined as the largest semi-metric on X
satisfying dK ≤ d′K .
An important breakthrough in Teichmüller theory was the result obained by
Royden in his paper [62], saying that the Teichmüller metric on T coincides
with the Kobayashi metric of that space.
We already noted that in the case where the surface S is a torus, its Te-
ichmüller space, equipped with its complex analytic structure and with its

7A pseudo-metric satisfies all the axioms of a metric except the axiom d(x, y) = 0 ⇒
x = y.
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Teichmüller metric, is isomorphic to the unit disk D equipped with its stan-
dard complex structure and with its Poincaré metric respectively. Thus, us-
ing Royden’s result, one can imagine the Teichmüller space of an arbitrary
surface as a space which in some sense is filled with Teichmüller spaces of
tori. This remark is at the basis of the theory of Teichmüller disks in Te-
ichmüller spaces, that is, the theory of holomorphic isomorphic embeddings
of the Poincaré disk in these spaces; see for instance [44] and [25].
It follows easily from the definition that a holomorphic (or anti-holomorphic)
homeomorphism of a complex manifold X acts by isometries with respect
to the Kobayashi metric. In particular, the extended mapping class group
acts as an isometry group of the Kobayashi metric of Teichmüller space.
In the paper [62], Royden proved that for any closed surface S of genus
≥ 3, the natural map from the extended mapping class group Γ∗(S) into the
isometry group Isom(T (S)) of the Teichmüller space of S equipped with the
Kobayashi metric is an isomorphism, and that in the case where S is the
closed surface of genus two, the natural map Γ∗(S) → Isom(T (S)) is surjec-
tive, with the kernel being of order two and generated by the hyperelliptic
involution.
Since the Teichmüller metric coincides with the Kobayashi metric, the result
holds with the Kobayashi metric replaced by the Teichmüller metric.
Earle and Kra gave a proof of the corresponding results for surfaces with
punctures. The general result on the isometry groups of Teichmüller spaces
equipped with the Teichmülller metric is summarized in the following theo-
rem:

Theorem 22.2 (Royden [62] for the case of closed surfaces, and Earle and
Kra [13] for the remaining cases). Let S be a surface which is not a sphere
with at most four punctures, a torus with at most two punctures, or a closed
surface of genus two. Then, the natural homomorphism

Γ∗(S) → Isom(T (S))

is an isomorphism.
In the excluded cases, the situation is as follows:

(1) If S = S0,3, then T (S)) is reduced to a point, Isom(T (S0,3)) = {Id},
whereas Γ∗(S0,3) is nontrivial (it is an order-two extension of the
permutation group on three elements).

(2) If S = S1,1, S1,0 or S0,4, then T (S)) is isometric to the hyperbolic
plane, and Isom(T (S1,1)) = Isom(T (S0,4) = Mob∗

R, which is a 3-
dimensional Lie group isomorphic to the isometry group of the upper
half-plane H2 equipped with its Poincaré metric. In other words,
Mob∗

R is the group of transformations of H2 that are either of the
form z 6→ (az + b)/(cz +d) with ad− bc = 1 or z 6→ (az + b)/(cz +d)
with ad− bc = −1, where a, b, c, d are real coefficients. On the other
hand, the extended mapping class group in these cases is respectively
the group SL(2, Z) and a finite extension of that group.
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(3) If S = S1,2, then T (S) is isometric to the Teichmüller space of the
sphere with 5 punctures S0,5. It is known that Γ∗(S1,2) is not isomor-
phic to Γ∗(S0,5). Thus, the homomorphism Γ∗(S1,2) → Isom(T (S1,2))
is not an isomorphism.

(4) The natural map Γ∗(S2,0) → Isom(T (S2,0)) is onto, and its kernel
is the order-two subgroup of Γ∗(S2,0) generated by the hyperellip-
tic involution. Thus, in this case Isom(T (S2,0)) is isomorphic to
Γ∗(S2,0)/Z2.

As in the case of biholomorphic homeomorphisms that we mentioned in
Section 21, Earle and Kra proved in [13] the following local rigidity result
which is stronger than Theorem 22.2. Given two surfaces Sg,n and Sg′,n′

which both are not a sphere with at most four holes, a torus with at most
three holes or a cosed surface of genus two, if we have an isometry between
an open set of T (Sg,n) and an open set of T (Sg′,n′), then (g, n) = (g′, n′) and
the isometry is the restriction of the action of an element of the extended
mapping class group of Sg,n on the corresponding Teichmüller space.
In particular, there exist Teichmüller spaces which have the same dimension
that are not isometric.
The Teichmüller metric is a Finsler metric, whose co-norm in the cotangent
space to Teichmüller space at each point is the L1-norm on the vector space
of quadratic differentials at that point (see [62]). As we already mentioned,
the proof of Theorem 22.2 is a local one, and the key point in that proof is
a careful analysis of the smoothness (or, rather, the lack of smoothness) of
the unit sphere in the vector space of L1-integrable holomorphic quadratic
differentials on S.8
The fact that the Teichmüller metric is a Finsler metric was first proved by
B. O’Byrne (see [54]) using earlier work of Earle and Eells ([11]).
Finally, we mention that Ivanov gave a new proof of Royden’s theorem that
is based on the rigidity of the action of the extended mapping class goup
on the curve complex (see [31]). The outline of Ivanov’s approach is the
following.
Let h : T → T be an isometry of the Teichmüller metric, and let x be
an arbitrary point in T . Then, h induces a homeomrophism between the
set of geodesic rays in T starting at a point and the set of geodesic rays
starting at the image point. Now there is a natural homeomorphism between
the set of Teichmüller geodesic rays starting at a point and the space of
equivalence classes of measured foliations on a Riemann surface representing
that point. Indeed, the set of geodesic rays starting at the equivalence
class of a Riemann surface is naturally parametrized by the vector space
of quadratic differentials on that surface, and by a theorem of Hubbard
and Masur, each equivalence class F of measured foliations determines in a
unique way a quadratic differential whose horizontal foliations is in the class

8Note that despite the fact that the unit balls of the Teichmüller Finsler metric are not
smooth, the distance function that is associated to this metric is smooth, see [10].
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F . In this way, the isometry : T → T defines a homeomorphism of the space
MF . By an analysis involving the codimension sets of geometric intersection
functions of measured foliations, Ivanov proves that this homeomorphism
preserves the natural image of R∗

+ × S in MF , and hence, it defines a
homeomorphism of PMF which preserves the image of the set S in that
space. Therefore, one obtains a self-map of the vertex set of the curve
complex C(S) of the surface S. Ivanov proves that this automorphism of
C(S) preserves the set of pairs of edges that are connected by an edge.
Using the fact that C(S) is a flag complex, this implies that the map on the
vertex set induces a simplicial automorphism of C(S). By the Thorem of
Ivanov-Korkmaz and Luo (Theorem 6.3, this automorphism is induced by
an extended mapping class, and Ivanov proves that this extendd mapping
class induces the isometry h of Teichmüller space that we started with.

23. Isometries of the Weil-Petersson metric

We already noted that if S is a Riemann surface and if x = [S] is the
corresponding point in Teichmüller space T , then there is an identification of
the cotangent space T ∗

xT with the space of integrable holomorphic quadratic
differentials on S that have at most simple poles at the punctures.
The Weil-Petersson product is the L2 Hermitian product on the space of
quadratic differentials on a given Riemann surface, defined by

〈φ,ψ〉 =
∫

S

φψ

ρ
dz ∧ dz

where ρ is the line element of the unique complete finite volume hyperbolic
metric on S (that is, ρ is the function in the local conformal coordinates z
characterized by the fact that the line element of the hyperbolic metric has
the form ds2 = ρ(z)|dz|2).
This gives a product on the cotangent space to Teichmüller space, which
defines the Hermitian Weil-Petersson metric of T (S), by transporting the
L2 inner product from the cotangent space T ∗

xT to the tangent space TxT
via the pairing 〈µ,φ〉 =

∫
S µφ between the tangent and cotangent spaces

that we recalled above.
The Weil-Petersson metric is Kähler, non complete, with negative sectional
curvature, and it is invariant under the action of the extended mapping class
group Γ∗ on T .
In the paper [47], Masur and Wolf proved the following result

Theorem 23.1. Let Sg,n be a surface which is not a sphere with at most
four holes or a torus with at most two holes. Then, the natural map

η : Γ∗(Sg,n) → T (Sg,n)

is surjective.

In other words, every isometry of the Weil-Petersson metric is induced by
an element of the extended mapping class group.
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The approach that Masur and Wolf used for the proof of this theorem is
analogous to the one used by Ivanov for his proof of Royden’s theorem on
the isometries of the Teichmüller metric that we recalled in Section 22. They
associate to an arbitrary isometry h of the Weil-Petersson metric an auto-
morphism of the curve complex of S. Then, they use the theorem of Ivanov-
Korkmaz-Luo (Theorem 6.3) saying that (except in some special cases) the
natural homomorphism from the extended mapping class group into the au-
tomorphism group of the curve complex is an isomorphism. Finally, they
show that the action of this extended mapping class group on Teichmüller
space is the one induced by the isometry h of the Weil-Petersson metric.
Masur and Wolf define the automorphism of the curve complex as follows.
By previous work of Masur [45], the Weil-Petersson completion of the Te-
ichmüller space T (S) is obtained by adding a frontier which is the union of
the various Teichmüller spaces of surfaces with nodes or punctures obtained
from S by pinching systems of curves to points. Each of these “boundary
Teichmüller spaces” is equipped with its own Weil-Petersson metric and,
equipped with that metric, each boundary Teichmüller space is isometri-
cally embedded in the boundary of the completion of T (S). Now Masur
and Wolf show that each isometry h of Teichmüller space extends to the
Weil-Petersson completion of that space, acting by isometries on the Weil-
Petersson metric of the boundary spaces. Since the boundary Teichmüller
spaces are parametrized by systems of curves on the surface, this gives the
desired action on the curve complex.
To show that the action of the mapping class h′ obtained through the action
on the curve complex induces the isometry h of the Weil-Petersson metric,
Masur and Wolf analyze the actions of h and h′ on the set of Weil-Petersson
geodesics of Teichmüller space. Their arguments involve the CAT(0) geom-
etry of the Weil-Petersson metric and a result of Wolpert on the convexity
of the geodesic length function along Weil-Petersson geodesics.
We also note that in [71], Wolpert gave a proof of Theorem 23.1 which is a
simplification of the proof by Masur and Wolf, and which is based on the
fact (due to Wolpert) that the Weil-Petersson completion T (S) is the convex
hull of its maximally degenerate surfaces, i.e. the surfaces with a maximal
number of nodes. These are the surfaces obtained from S by pinching a
collection of curves that decomposes this surface into generalized pairs of
pants (that is, spheres with three holes where each hole can be either a
puncture or an open disk removed).
Finally, we note that Brock and Margalit gave in [7] another proof of the
result of Masur and Wolf, which is based on the action of the isometry group
of the Weil-Petersson metric on the pants decomposition graph of S. This
action is obtained by making the Weil-Petersson isometry group act on the
maximally degenerate surfaces. These surfaces are isolated points in the
stratification of the completion T (S), since each such stratum parametrizes
the Teichmüller space of a sphere with three punctures, and such a Te-
ichmüller space is reduced to a point. Then, Brock and Margalit apply
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Margalit’s result ([43], cf. Theorem 7.3 above) on the automorphism group
of the pants decomposition complex. In the same paper, Brock and Mar-
galit completed the result of Masur and Wolf by treating the cases of special
surfaces that are excluded in the theorem of Masur and Wolf. The gen-
eral result on the isometries of the Weil-Petersson metric can be stated as
follows:

Theorem 23.2 (Masur-Wolf and Brock-Margalit [47], [7] ). Let S be a
surface which is not a sphere with at most four holes, a torus with at most
two holes or a closed surface of genus 2. Then, the natural homomorphism
η : Γ∗(S) → Isom(T (S)) is an isomorphis. Furthermore, the situation in the
excluded case is as follows:

(1) if S is a closed surface of genus 2 or a torus with 1 or 2 punctures,
ker(η) = Z2;

(2) if S is a sphere with 4 punctures, ker(η) = Z2 ⊕ Z2;
(3) if S is a sphere with 3 punctures, ker(η) = Γ∗(S)

24. Thurston’s asymmetric metric

This section contains no result but an open question.
In this section, S is a surface of negative Euler characteristic which has n ≥
punctures.
We recall that the Teichmüller space T = T (S) can also be defined as the
space of isotopy classes of complete finite area hyperbolic metrics on S.
One can also make a definition by an atlas, as follows. A hyperbolic structure
on S is a maximal atlas {(Ui,φi)}i∈I where for each i ∈ I, Ui is an open
subset of S and φi is a homemorphism from Ui onto an open subset of the
hyperbolic plane H2, satisfying

⋃

i∈I
Ui = S and such that any map of the

form φi ◦φ−1
j is, on each connected component of φj(Ui∩Uj), the restriction

of an orientation-preserving isometry of H2.
A surface equipped with a hyperbolic structure carries a metric obtained
by taking on each chart domain Ui the pull-back by the map φi the metric
on φi(Ui) induced from its inclusion in H2. The metrics obtained on the
various Ui’s give a consistent way of measuring lengths of paths in S, and
the metric we consider on S is the associated length metric, that is, the
distance between two points is defined as the infinmum of the lengths of
continuous and piecewise C1 paths joining these points. We only consider
hyperbolic metrics that are complete and of finite area.
An asymmetric metric on a set X is a map L : X × X → R+ that satisfies
all the axioms of a metric except the symmetry axiom, and such that the
symmetry axiom is not satisfied, that is, there exist x and y in X such that
L(x, y) *= L(y, x). Teichmüller space is equipped with an asymmetric metric
that was defined by Thurston as follows.
Given be two hyperbolic structures g and h on S given a homeomorphism
ϕ : S → S which is isotopic to the identity, the Lipschitz constant Lip(ϕ) of
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ϕ is defined by the formula

Lip(ϕ) = sup
x %=y∈S

dh

(
ϕ(x),ϕ(y)

)

dg
(
x, y

) .

The infimum of this Lipschitz constant over all homeomorphisms ϕ in the
isotopy class of the identity is denoted by

L(g, h) = log inf
ϕ∼IdS

Lip(ϕ).

Making g and h vary in their respective homotopy classes does not change
the quantity L(g, h) and thus we obtain a function which is well defined on
T (S) × T (S). This function satisfies the axioms of an asymmetric metric
and we call it Thurston’s asymmetric metric. We shall denote it by the same
letter:

L : T (S) × T (S) → R+.

Thurston showed that the quantity L(g, h) can also be computed by compar-
ing lengths of closed geodesics in the same homotopy class, measured with
the metrics g and h. More precisely, for any homotopy class α of essential
simple closed curves on S, we consider the quantity

rg,h(α) =
lh(α)
lg(α)

and we set
K(g, h) = log sup

α∈S
rg,h(α).

It is easy to see that K ≤ L. In his paper [66], Thurston proves that K = L.
We ask the following question: Is the isometry group Isom(T ,K) of Thurs-
ton’s asymmetric metric equal to the natural image of the extended mapping
class group in Isom(T ,K) ?
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