CATEGORIFICATION, KOSTANT'S PROBLEM AND GENERALIZED VERMA MODULES

Volodymyr Mazorchuk

(Uppsala University)

1. Motivation — generalized Verma modules

 \mathfrak{g} — semi-simple finite-dimensional complex Lie algebra.

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ — triangular decomposition.

 $\mathfrak{p} \supset \mathfrak{h} \oplus \mathfrak{n}_+$ — parabolic subalgebra.

 $\mathfrak{p}=\mathfrak{a}\oplus\mathfrak{n}$

 \mathfrak{n} — nilpotent radical of \mathfrak{p}

 \mathfrak{a} — Levi factor

V — simple \mathfrak{a} -module

 $\mathfrak{n} V = 0$

 $M(\mathfrak{p}, V) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V$ — generalized Verma module

Question 1: What is the structure of $M(\mathfrak{p}, V)$?

Question 2: When is $M(\mathfrak{p}, V)$ irreducible?

Discouragement: No classification of simple a-modules.

Encouragement 1: Many partial cases are known, in particular, $\mathfrak{a} = \mathfrak{h}$, V finite-dimensional, V weight dense with f.d. weight spaces, V generic Gelfand-Zetlin, V Whittaker. (Names: Verma, BGG, Jantzen, McDowell, Futorny, M., Milicic, Soergel, Khomenko, Mathieu, Britten, Lemire, others)

Encouragement 2: Annihilators of V are classified via annihilators of simple highest weight modules.

Idea (following Milicic-Soergel's study of the case when V is a Whittaker module):

- Take a simple highest weight \mathfrak{a} -module V' with the same annihilator as V.
- Realize $M(\mathfrak{p}, V)$ and $M(\mathfrak{p}, V')$ as objects in some Coker-categories.
- Prove (using Harish-Chandra bimodules) that these categories are equivalent and that the equivalence sends $M(\mathfrak{p}, V)$ to $M(\mathfrak{p}, V')$.
- Deduce the structural properties of $M(\mathfrak{p}, V)$ from those of $M(\mathfrak{p}, V')$ and KL-type combinatorics.

Encouragement 1: Works for Whittaker and generic Gelfand-Zetlin modules.

Encouragement 2: The categories of Harish-Chandra bimodules which appear depend only on the annihilator of V.

Catch 1: Needs better understanding of the so-called Kostant's problem for V and some induced modules.

Catch 2: Answers the irreducibility question, but does not help to describe all subquotients of GVM as this description depends on more than the annihilator of V.

Example: The Verma module $M(s \cdot 0)$ over \mathfrak{sl}_3 is parabolically induced from a simple Verma \mathfrak{sl}_3 -module, say X. The module $M(s \cdot 0)$ has simple subquotients

```
L(s \cdot 0), \quad L(st \cdot 0), \quad L(ts \cdot 0), \quad L(sts \cdot 0).
```

Let X' be a simple dense \mathfrak{sl}_3 -module with the same annihilator as X. Then (Futorny) $M(\mathfrak{p}, X')$ has only three subquotients N_1 , N_2 and N_3 .

Mathieu's functor can be used to associate N_1 , N_2 and N_3 with $L(s \cdot 0)$, $L(st \cdot 0)$ and $L(sts \cdot 0)$ respectively.

 $L(ts \cdot 0)$ is induced from a module with the annihilator, which is ''strictly bigger'' than that of X.

2. Kostant's problem

 $M \longrightarrow \mathfrak{g-module}.$

 $\mathcal{L}(M,M) = \operatorname{Hom}_{\mathbb{C}}(M,M)^{ad-fin}$ — locally ad $U(\mathfrak{g})$ -finite \mathbb{C} endomorphisms of M.

Kostant's problem: For which (simple) M is the natural injection

$$U(\mathfrak{g})/\operatorname{Ann}_{U(\mathfrak{g})}(M) \hookrightarrow \mathcal{L}(M,M)$$

surjective?

Answer is:

• not known in general, not even for simple highest weight modules

• known to be positive for Verma modules and for simple highest weight modules of the form $L(w_0^{\mathfrak{p}}w_0 \cdot \lambda)$, λ is regular and dominant (Joseph, Gabber-Joseph).

• known to be negative for $L(st \cdot 0)$ in type B_2 (Joseph).

Theorem 1.(M.) Let s be a set of simple roots for \mathfrak{p} . Then the answer to Kostant's problem is positive for the simple highest weight module of the form $L(sw_0^{\mathfrak{p}}w_0 \cdot \lambda)$ where λ is regular and dominant.

Example: For the regular block in type B_2 the answer to Kostant's problem is thus positive for L(0), $L(s \cdot 0)$, $L(t \cdot 0)$, $L(sts \cdot 0)$, $L(tst \cdot 0)$ and $L(tsts \cdot 0)$; and it is negative for $L(st \cdot 0)$ and $L(ts \cdot 0)$.

Theorem 2. (M.-Stroppel) Let $\mathfrak{g} = \mathfrak{sl}_n$. Then for simple highest weight modules of the form $L(x \cdot \lambda)$ where λ is regular and dominant the answer to Kostant's problem is a left cell invariant.

3. Why? Twisting FUNCTORS

- s simple reflection corresponding to simple root α
- $X_{-\alpha}$ some non-zero element in $\mathfrak{g}_{-\alpha}$
- U_{α} localization of $U(\mathfrak{g})$ with respect to $X_{-\alpha}$
- Θ_{α} an automorphism of g corresponding to s

Twisting functor (Arkhipov):

$$T_s: M \mapsto \Theta_{\alpha} (U_{\alpha}/U(\mathfrak{g}) \otimes_{\mathfrak{g}} M).$$

Properties (Andersen-Stroppel, Khomenko-M.):

- T_s commutes with projective functors.
- $\mathcal{R}T_s$ is an autoequivalence of $\mathcal{D}^b(\mathcal{O}_0)$.
- $\mathcal{R}T_s$'s satisfy braid relations and hence define an action of the braid group on $\mathcal{D}^b(\mathcal{O}_0)$.
- The action of $\mathcal{R}T_s$'s on $\mathcal{D}^b(\mathcal{O}_0)$ categorifies the left regular representation of the Weyl group.
- $T_s M(x \cdot 0) \cong M(sx \cdot 0)$ if sx > x.
- T_s is left adjoint to Joseph's completion functor.

Kostant's problem can be reduced to numerical calculations using:

- $\operatorname{Hom}_{\mathfrak{g}}(V, \mathcal{L}(M, M)) = \operatorname{Hom}_{\mathfrak{g}}(M, M \otimes V^*), V simple finite-dimensional.$
- Annihilators of simple highest weight modules correspond bijectively to left cells.

Need: dim Hom_g($L(x \cdot 0), L(x \cdot 0) \otimes V^*$) is a left cell invariant.

Roughly speaking the left cell is a simple S_n -module, where S_n acts via twisting functors.

Twistings commute with projective functors $_ \otimes V^*$.

 $T_sL(x \cdot 0)$ is either 0 (if sx > s) or has simple top $L(x \cdot 0)$ and semisimple radical consisting of $L(sx \cdot 0)$ and some other modules $L(y \cdot 0)$, where x and y are in the same left cell (multiplicity is given by KL-combinatorics).

Using the properties of (derived) twisting functors one can show that

 $\dim \operatorname{Hom}_{\mathfrak{g}}(L(x \cdot 0), L(x \cdot 0) \otimes V^*) \leq \dim \operatorname{Hom}_{\mathfrak{g}}(L(y \cdot 0), L(y \cdot 0) \otimes V^*)$

for any x, y in the same left cell.

4. Structure of generalized Verma modules

V — simple a-module

Coker(V) — category of all modules X which admit resolution $M_2 \rightarrow M_1 \rightarrow X \rightarrow 0$, where M_2 and M_1 are direct summands of some $E \otimes V$, E finite-dimensional (Milicic-Soergel).

Need: V — projective in Coker(V)

For \mathfrak{sl}_n we can always substitute V by some \tilde{V} , which will be projective in $\operatorname{Coker}(\tilde{V})$ by Irving-Shelton.

Using "parabolic Harsh-Chandra homomorphism" (Drozd-Futorny-Ovsienko) we can assume that $M(\mathfrak{p}, \tilde{V})$ is projective in $\operatorname{Coker}(M(\mathfrak{p}, \tilde{V}))$.

From the above results on Kostant's problem it follows that Kostant's problem has a positive answer for $M(\mathfrak{p}, \tilde{V})$.

Corollary: $\operatorname{Coker}(M(\mathfrak{p}, \tilde{V}))$ is equivalent to a certain category of Harish-Chandra bimodules.

Blocks of $\operatorname{Coker}(M(\mathfrak{p}, \tilde{V}))$ are described by weakly properly stratified algebras in the sense of Cline-Parshall-Scott and Frisk.

This means that projectives in these categories are filtered by the so-called standard and proper standard modules, both having a clear categorical interpretation (and thus preserved by "nice" equivalences). Generalized Vermas correspond to proper standard modules.

Catch: Simple objects in these categories are not simple \mathfrak{g} -modules in general.

Example:
$$\mathfrak{g} = \mathfrak{a} = \mathfrak{sl}_2, V = L(s \cdot 0).$$

The corresponding block of $\operatorname{Coker}(M(\mathfrak{p}, \tilde{V}))$ is equivalent to the category of modules over the algebra $\mathbb{C}[x]/(x^2)$. It contains two indecomposable objects: the projective object $P(s \cdot 0)$ and the simple object $\hat{L}(s \cdot 0)$, which have the following Loewy filtrations:

$$P(s \cdot 0) = \begin{array}{c} L(s \cdot 0) \\ L(0) \\ L(s \cdot 0) \end{array}, \quad \hat{L}(s \cdot 0) = \begin{array}{c} L(s \cdot 0) \\ L(0) \end{array},$$

There is no projective module in $\operatorname{Coker}(M(\mathfrak{p}, \tilde{V}))$ with simple top L(0).

This is very similar to the classical realization of eAemodules inside A-modules for an Artin algebra A.

Conclusion: There is no hope to obtain a complete description of all composition factors of $M(\mathfrak{p}, V)$ in full generality using this approach.

On can only describe the rough structure of $M(\mathfrak{p}, V)$, that is multiplicities of those simples, for which there is a projective cover in $\operatorname{Coker}(M(\mathfrak{p}, \tilde{V}))$.

Other simples correspond to "strictly bigger annihilators".

Theorem 3: (M.-Stroppel) Let L be the simple top of some projective in $Coker(M(\mathfrak{p}, \tilde{V}))$ then

$$[M(\mathfrak{p}, V) : L] = [M(\mathfrak{p}, L(\lambda)) : L(\mu)]$$

where $L(\lambda)$ is a simple highest weight module with the same annihilator as V and the weight μ can be described explicitly (the right hand side is combinatorially understood).

Corollary: $M(\mathfrak{p},V)$ is irreducible if and only if so is $M(\mathfrak{p},L(\lambda)).$