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1. Motivation — generalized Verma modules

g — semi-simple finite-dimensional complex Lie

algebra.

g = n− ⊕ h⊕ n+ — triangular decomposition.

p ⊃ h⊕ n+ — parabolic subalgebra.

p = a⊕ n

n — nilpotent radical of p

a — Levi factor

V — simple a-module

nV = 0

M(p, V ) = U(g)⊗U(p) V — generalized Verma module

Question 1: What is the structure of M(p, V )?

Question 2: When is M(p, V ) irreducible?
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Discouragement: No classification of simple a-modules.

Encouragement 1: Many partial cases are known, in par-

ticular, a = h, V finite-dimensional, V weight dense

with f.d. weight spaces, V generic Gelfand-Zetlin, V

Whittaker. (Names: Verma, BGG, Jantzen, McDow-

ell, Futorny, M., Milicic, Soergel, Khomenko, Mathieu,

Britten, Lemire, others)

Encouragement 2: Annihilators of V are classified via

annihilators of simple highest weight modules.

Idea (following Milicic-Soergel’s study of the case

when V is a Whittaker module):

• Take a simple highest weight a-module V ′ with the

same annihilator as V .

• Realize M(p, V ) and M(p, V ′) as objects in some

Coker-categories.

• Prove (using Harish-Chandra bimodules) that these

categories are equivalent and that the equivalence

sends M(p, V ) to M(p, V ′).

• Deduce the structural properties of M(p, V ) from

those of M(p, V ′) and KL-type combinatorics.
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Encouragement 1: Works for Whittaker and generic

Gelfand-Zetlin modules.

Encouragement 2: The categories of Harish-Chandra bi-

modules which appear depend only on the annihilator

of V .

Catch 1: Needs better understanding of the so-called

Kostant’s problem for V and some induced modules.

Catch 2: Answers the irreducibility question, but does

not help to describe all subquotients of GVM as this

description depends on more than the annihilator of V .

Example: The Verma module M(s ·0) over sl3 is parabol-

ically induced from a simple Verma sl3-module, say X.

The module M(s · 0) has simple subquotients

L(s · 0), L(st · 0), L(ts · 0), L(sts · 0).

Let X ′ be a simple dense sl3-module with the same

annihilator as X. Then (Futorny) M(p, X ′) has only

three subquotients N1, N2 and N3.

Mathieu’s functor can be used to associate N1, N2 and

N3 with L(s · 0), L(st · 0) and L(sts · 0) respectively.

L(ts · 0) is induced from a module with the annihilator,

which is ‘‘strictly bigger’’ than that of X.
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2. Kostant’s problem

M — g-module.

L(M, M) = HomC(M, M)ad−fin — locally ad U(g)-finite C-

endomorphisms of M .

Kostant’s problem: For which (simple) M is the natural

injection

U(g)/AnnU(g)(M) ↪→ L(M, M)

surjective?

Answer is:

• not known in general, not even for simple highest

weight modules

• known to be positive for Verma modules and for

simple highest weight modules of the form L(wp
0w0 · λ),

λ is regular and dominant (Joseph, Gabber-Joseph).

• known to be negative for L(st · 0) in type B2 (Joseph).
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Theorem 1.(M.) Let s be a set of simple roots for p.

Then the answer to Kostant’s problem is positive for

the simple highest weight module of the form

L(swp
0w0 · λ) where λ is regular and dominant.

Example: For the regular block in type B2 the answer

to Kostant’s problem is thus positive for L(0), L(s · 0),

L(t ·0), L(sts ·0), L(tst ·0) and L(tsts ·0); and it is negative

for L(st · 0) and L(ts · 0).

Theorem 2.(M.-Stroppel) Let g = sln. Then for simple

highest weight modules of the form L(x · λ) where λ is

regular and dominant the answer to Kostant’s problem

is a left cell invariant.
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3. Why? Twisting FUNCTORS

s — simple reflection corresponding to simple root α

X−α — some non-zero element in g−α

Uα — localization of U(g) with respect to X−α

Θα — an automorphism of g corresponding to s

Twisting functor (Arkhipov):

Ts : M 7→ Θα

(
Uα/U(g)⊗g M

)
.

Properties (Andersen-Stroppel, Khomenko-M.):

• Ts commutes with projective functors.

• RTs is an autoequivalence of Db(O0).

• RTs’s satisfy braid relations and hence define an

action of the braid group on Db(O0).

• The action of RTs’s on Db(O0) categorifies the left

regular representation of the Weyl group.

• TsM(x · 0) ∼= M(sx · 0) if sx > x.

• Ts is left adjoint to Joseph’s completion functor.
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Kostant’s problem can be reduced to numerical calcu-

lations using:

• Homg(V,L(M, M)) = Homg(M, M ⊗ V ∗), V — simple

finite-dimensional.

• Annihilators of simple highest weight modules cor-

respond bijectively to left cells.

Need: dim Homg(L(x ·0), L(x ·0)⊗V ∗) is a left cell invariant.

Roughly speaking the left cell is a simple Sn-module,

where Sn acts via twisting functors.

Twistings commute with projective functors − ⊗ V ∗.

TsL(x · 0) is either 0 (if sx > s) or has simple top L(x · 0)

and semisimple radical consisting of L(sx · 0) and some

other modules L(y · 0), where x and y are in the same

left cell (multiplicity is given by KL-combinatorics).

Using the properties of (derived) twisting functors one

can show that

dim Homg(L(x·0), L(x·0)⊗V ∗) ≤ dim Homg(L(y·0), L(y·0)⊗V ∗)

for any x, y in the same left cell.
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4. Structure of generalized Verma modules

V — simple a-module

Coker(V ) — category of all modules X which admit res-

olution M2 → M1 → X → 0, where M2 and M1 are direct

summands of some E⊗V , E finite-dimensional (Milicic-

Soergel).

Need: V — projective in Coker(V )

For sln we can always substitute V by some Ṽ , which

will be projective in Coker(Ṽ ) by Irving-Shelton.

Using “parabolic Harsh-Chandra homomorphism”

(Drozd-Futorny-Ovsienko) we can assume that M(p, Ṽ )

is projective in Coker(M(p, Ṽ )).

From the above results on Kostant’s problem it fol-

lows that Kostant’s problem has a positive answer for

M(p, Ṽ ).

Corollary: Coker(M(p, Ṽ )) is equivalent to a certain cat-

egory of Harish-Chandra bimodules.
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Blocks of Coker(M(p, Ṽ )) are described by weakly properly

stratified algebras in the sense of Cline-Parshall-Scott

and Frisk.

This means that projectives in these categories are fil-

tered by the so-called standard and proper standard

modules, both having a clear categorical interpretation

(and thus preserved by “nice” equivalences). General-

ized Vermas correspond to proper standard modules.

Catch: Simple objects in these categories are not sim-

ple g-modules in general.

Example: g = a = sl2, V = L(s · 0).

The corresponding block of Coker(M(p, Ṽ )) is equivalent

to the category of modules over the algebra C[x]/(x2).

It contains two indecomposable objects: the projective

object P (s · 0) and the simple object L̂(s · 0), which have

the following Loewy filtrations:

P (s · 0) =

L(s · 0)

L(0)

L(s · 0)

, L̂(s · 0) =
L(s · 0)

L(0)
,

There is no projective module in Coker(M(p, Ṽ )) with

simple top L(0).
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This is very similar to the classical realization of eAe-

modules inside A-modules for an Artin algebra A.

Conclusion: There is no hope to obtain a complete

description of all composition factors of M(p, V ) in full

generality using this approach.

On can only describe the rough structure of M(p, V ),

that is multiplicities of those simples, for which there

is a projective cover in Coker(M(p, Ṽ )).

Other simples correspond to “strictly bigger annihila-

tors”.

Theorem 3: (M.-Stroppel) Let L be the simple top of

some projective in Coker(M(p, Ṽ )) then

[M(p, V ) : L] = [M(p, L(λ)) : L(µ)]

where L(λ) is a simple highest weight module with the

same annihilator as V and the weight µ can be de-

scribed explicitly (the right hand side is combinatori-

ally understood).

Corollary: M(p, V ) is irreducible if and only if so is

M(p, L(λ)).
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