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The invariant called knot Heegaard-Floer
Determines the genus–and more.

To distinguish transverse knots
(and it turns out there are lots!)

HFK opens up a new door.
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What is Heegaard-Floer homology?

dim(ĤFKi(K ; s)):
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Characteristics of ĤFK:
◮ Bigraded;
◮ Euler characteristic is

Conway-Alexander polynomial;
◮ Max grading is knot genus;

(Ozsváth-Szabó 2001)
◮ Determines knot fibration;

(Ghiggini, Ni 2006)
◮ Defined via pseudo-holomorphic

curves.
We will give a simple algorithm for
computing HFK. . .
. . . and so the world’s simplest algorithm
for knot genus!
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◮ Determines knot fibration;

(Ghiggini, Ni 2006)
◮ Defined via pseudo-holomorphic

curves.
We will give a simple algorithm for
computing HFK. . .
. . . and so the world’s simplest algorithm
for knot genus!



What is Heegaard-Floer homology?
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Setting: Grid diagrams

Grid diagram: square diagram with one
X and one O per row and column.

Turn it into a knot: connect
X to O in each column;
O to X in each row.

Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram,
rotate crossings so vertical crosses over
horizontal.

The knot is unchanged under
cyclic rotations:
Move top segment to bottom.
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Computing the Alexander polynomial

We categorify the following formula:
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= ±t∗(1 − t)n−1∆(K ; t)

◮ Make matrix of t−winding #

(with extra row/column of 1’s);

◮ det determines the Conway-Alexander polynomial ∆
(n = size of diagram; here 6)
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Computing HFK: Chain complex C̃K

Define a chain complex C̃K over Z/2.
◮ Generated by matchings between

horizontal and vertical gridcircles
(as counted in det for Alexander).

◮ Boundary ∂ switches corners on
empty rectangles:

7−→

Sum over all ways to switch
SW-NE corners of an empty
rectangle to NW-SE corners.
(Empty means: no X ’s, O’s, or
other points in generator.)
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Computing HFK: ∂2 = 0
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Each term in ∂2 must have a
mate:

◮ If rectangles are disjoint,
take rectangles in either
order.

◮ If rectangles share a corner,
decompose the union in
another way.
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Computing HFK: Gradings on C̃K

In the plane,

7−→

removes one inversion.

For A,B ,C ⊂ R
2,

I(A,B) := #{ a�
b | a ∈ A, b ∈ B }

I(A − B ,C ) := I(A,C ) − I(B ,C )

For x a generator, X the set of X ’s, O the set of of O’s, the
gradings are:

◮ Maslov: M(x) := I(x − O, x− O) + 1.

◮ Alexander:

A(x) := 1
2

(
I(x− O, x − O) − I(x− X, x − X) − (n − 1)

)
.



Computing HFK: The answer

Theorem (Manolescu-Ozsváth-Sarkar)

For G a grid diagram for K,

H∗(C̃K(G )) ≃ ĤFK(K ) ⊗ V⊗n−1

where V := (Z/2)0,0 ⊗ (Z/2)−1,−1.

Gillam and Baldwin used this to compute ĤFK for all knots
with ≤ 11 crossings, including new values of knot genus.
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Improving the answer

dim ĤFKi(K ; s):

1

1
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To remove factors of V⊗n−1:

HFK−: variant of ĤFK
Module over Z/2[U]
U has degree (−1,−2)

Related to ĤFK by Univ. Coeff. Thm.
To compute: Add one Ui for each O

Complex CK−(G ) over Z/2[U1, . . . ,Un]
∂ counts rects. that contain only O’s,

weighted by corresponding Ui .

Theorem
(Manolescu-Ozsváth-Sarkar)

H∗(CK−(G )) ≃ HFK−(K ),

Each Ui acts by U on the homology.
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Further variants

Can also:

◮ Allow rectangles to cross X ’s to get a filtered complex, and

◮ Add signs (in essentially unique way) to work over Z[U].
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Combinatorial invariance

Theorem (Manolescu-Ozsváth-Szábo-T.)

For any sequence of elementary grid moves, there is an explicit
chain map exhibiting invariance of HFK−.

Conjecture (Naturality or Functoriality)

The chain map depends only on isotopy class of sequence of
elementary grid moves. That is, oriented mapping class group of K
acts on HFK−(K ).



Elementary grid moves

−→

◮ Cycle: Move left column to right, or top row to bottom.

◮ Commute: Switch two non-interfering columns or rows.

◮ Stabilize: Introduce a notch at a corner.

(Cromwell ’95, Dynnikov ’06)
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Elementary grid moves

−→

◮ Cycle: Move left column to right, or top row to bottom.

◮ Commute: Switch two non-interfering columns or rows.

◮ Stabilize: Introduce a notch at a corner.

Where’s Reidemeister III?

(Cromwell ’95, Dynnikov ’06)



Chain map for commutation counts pentagons
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To construct a chain map for commutation, draw two versions of
the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two
gridcircles.
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Contact structures and knots

A contact structure is a twisted 2-plane field:
if α is a 1-form defining the plane field, α ∧ dα is positive.
(Warning: above contact structure is reversed.)

A Legendrian knot is a knot that is tangent to the plane field.
A transverse knot is a knot that is transverse to the plane field.

Transverse knots have one easy invariant, the self-linking number.

Question. Can we find transverse knots with the same classical
knot type and self-linking number?



Ways to stabilize

−→

Four ways to stabilize: Where to leave the empty square?

◮ Two diagonal opposite ways preserve Legendrian knot.

◮ Two adjacent ways preserve closed braid.

◮ Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
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Four ways to stabilize: Where to leave the empty square?

◮ Two diagonal opposite ways preserve Legendrian knot.

◮ Two adjacent ways preserve closed braid.

◮ Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
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Transverse invariant: Definition

Definition
The canonical generator x+(G ) is given
by the upper-right corner of each X .

Facts:
◮ ∂x+ = 0. (The X ’s block any

rectangles.)
◮ [x+(G )] maps to [x+(G ′)] under

commutation and 3 out of 4
stabilizations.

Theorem (Ozsváth-Szabó-T.)

[x+(G )] in HFK−(m(K )) is an invariant
of the transverse knot represented by G,
up to quasi-isomorphism of filtered
complexes.



Transverse invariant: Properties

Let G be a grid diagram representing the transverse knot T .

◮ x+(G ) lives in bigrading (s, 2s), where s = sl(T )+1
2 .

◮ If T ′ differs from T by a positive stabilization, then
[x+(T ′)] = U[x+(T )].

◮ [x+(T )] 6= 0 in HFK−.

Corollary

For any transverse knot T of topological type K,

sl(T ) + 1

2
≤ τ(K ) ≤ g4(K )

where τ(K ) is the largest Alexander grading which has an element
which is not U torsion.



Transverse invariant: Examples

Let θ(T ) (resp. θ̂(T )) be the transverse invariant in HFK−(m(K ))

(resp. ĤFK(m(K ))).
θ̂(T ) = 0 iff θ(T ) is divisible by U.

Theorem (Ng-Ozsváth-T.)

The knots m(10132) and m(12n200) have two trans. reps. with
same sl, one with θ̂ = 0 and one with θ̂ 6= 0.

This technique also works for the (2, 3) cable of the (2, 3) torus
knot, originally found by Etnyre-Honda and Menasco-Matsuda.

Let δ1 be the next differential in the spectral sequence on ĤFK.

Theorem (Ng-Ozsváth-T.)

The pretzel knots P(−4,−3, 3) and P(−6,−3, 3) have two trans.
reps. with same sl, one with δ1 ◦ θ̂ = 0 and one with δ1 ◦ θ̂ 6= 0.



Transverse invariant: Going further

Theorem (Ng-Ozsváth-T.)

If the Naturality Conjecture is true, then the twist knot 72 has two
trans. reps. with the same sl, with θ̂ in different orbits of the
mapping class group.

But θ is not a complete invariant: Birman and Menasco have
classified closed 3-braids up to transverse isotopy.
In their small examples of distinct transverse knots, θ lives in a
1-dimensional space, so cannot distinguish them.
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