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0 General remarks on kernel functions

0.1 Kernel function Φ(x; y) for a pair of operators (Ax,By)

Let Φ(x; y) be a meromorphic function in x = (x1, . . . , xm) and y = (y1, . . . , yn),

and consider two operators Ax and By which act on meromorphic functions in x

and in y, respectively. We say that Φ(x; y) is a kernel function for the pair (Ax,By)

if it satisfies a functional equation of the form

AxΦ(x; y) = ByΦ(x; y).

In the theory of Macdonald polynomials, certain explicit kernel functions play

crucial roles in eigenfunction expansions and integral representations.

Eigenfunction expansion

Φ(x; y) =
∑

k

fk(x) gk(y), By gk(y) = gk(y)λk =⇒ Axfk(x) = fk(x)λk.

Integral representation

ϕ(x) =
∫

Φ(x; y)ψ(y)dµ(y), B∗
y ψ(y) = ψ(y)λ =⇒ Axϕ(x) = ϕ(x)λ.

0.2 Macdonald polynomials of type A

In order to clarify the idea, we first look at the role of kernel functions in the

theory of Macdonald polynomials of type A.

Consider the following q-difference operator Dx = D(q,t)
x in the variables x =

(x1, . . . , xm):

Dx = D(q,t)
x =

m∑
i=1

∏
1≤j≤m; j ̸=i

txi − xj

xi − xj
Tq,xi ;

Tq,xif(x1, . . . , xm) = f(x1, . . . , qxi, . . . , xm).

The Macdonald polynomials Pλ(x) = Pλ(x|q, t), parameterized by the partitions

λ with l(λ) ≤ m, are characterized as symmetric polynomials in x such that

(1) Pλ(x) = mλ(x) + lower terms w.r.t. the dominance ordering,

(2) DxPλ(x) = Pλ(x) dλ, dλ =
∑m

i=1 tm−iqλi ,
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where mλ(x) =
∑

µ∈Smλxµ stands for the monomial symmetric function of mono-

mial type λ.

Furthermore, Dx admits a commuting family D(r)
x (r = 0, 1, . . . ,m) of higher

order q-difference operators such that D(1)
x = Dx:

D(r)
x = t(

r
2)

∑
|I|=r

∏
i∈I;j /∈I

txi − xj

xi − xj

∏
i∈I

Tq,xi (r = 0, 1, . . . ,m).

These Macdonald-Ruijsenaars q-difference operators are simultaneously diagonal-

ized by the the Macdonald polynomials. In terms of the generating function

Dx(u) =
m∑

r=0

(−u)rD(r)
x , one has

Dx(u)Pλ(x) = Pλ(x)dλ(u), dλ(u) =
∏m

i=1(1 − utm−iqλi).

0.3 Kernel function of Cauchy type

Assuming that |q| < 1, we define a meromorphic function Φ(x; y|q, t) in the two

sets of variables x = (x1, . . . , xm), y = (y1, . . . , yn) by

Φ(x; y|q, t) =
m∏

j=1

n∏
l=1

(txjyl; q)∞
(xjyl; q)∞

(kernel function of Cauchy type),

where (a; q)∞ =
∏∞

k=0(1 − aqk). This function Φ(x; y|q, t) is expanded as follows

in terms of Macdonald polynomials in x variables and y variables:

Φ(x; y|q, t) =
∑

l(λ)≤min{m,n}

bλ(q, t) Pλ(x|q, t) Pλ(y|q, t).

This identity corresponds to the functional equation

D(q,t)
x Φ(x; y|q, t) − tm−nD(q,t)

y Φ(x; y|q, t) =
1 − tm−n

1 − t
Φ(x; y|q, t)

for the q-difference operator Dx = D(q,t)
x . Apart from the question of evaluating

the coefficients bλ(q, t), this functional equation already guarantees the existence

of an expansion formula as described above. Note also that the kernel function

Φ(x; y|q, t) furthermore intertwines the whole commuting family of Macdonald-

Ruijsenaars operators:

Dx(u)Φ(x; y|q, t) = (u; t)m−n Dy(tm−nu)Φ(x; y|q, t).
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0.4 Kernel function of dual Cauchy type

The function

Ψ(x; y) =
m∏

j=1

n∏
l=1

(xj − yl) (kernel function of dual Cauchy type)

is expanded in terms of Macdonald polynomials as follows:

Ψ(x; y) =
∑

λ⊂(nm)

(−1)|λ
∗| Pλ(x|q, t) Pλ∗(y|t, q),

where λ∗ = (m − λ′
m, m − λ′

m−1, . . . ,m − λ′
1) is the partition representing the

complement of λ in the m×n rectangle (nm). This expansion formula corresponds

to the functional equation

(1 − t)D(q,t)
x Ψ(x; y) − (1 − q)D(t,q)

y Ψ(x; y) = (1 − tmqn)Ψ(x; y).
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1 Koornwinder polynomials

Koornwinder polynomials (Koornwinder, 1992)

· · · multivariable generalization of Askey-Wilson polynomials to type BCm.

1.1 Koornwinder’s q-difference operator Dx

We consider the q-difference operator Dx = D(a,b,c,d|q,t)
x in m variables x =

(x1, . . . , xm), depending on six parameters (a, b, c, d|q, t):

Dx =
m∑

i=1

Ai,+(x)(Tq,xi − 1) +
m∑

i=1

Ai,−(x)(T−1
q,xi

− 1)

=
m∑

i=1

(
Ai,+(x)Tq,xi + Ai,−(x)T−1

q,xi

)
−

m∑
i=1

(Ai,+(x) + Ai,−(x)) ,

where Ai,±(x) = Ai,±(x; a, b, c, d|q, t) are defined by

Ai,+(x) =
(1 − axi)(1 − bxi)(1 − cxi)(1 − dxi)

(abcdq−1)
1
2 (1 − x2

i )(1 − qx2
i )

∏
1≤j≤m; j ̸=i

(1 − txi/xj)(1 − txixj)
t(1 − xi/xj)(1 − xixj)

,

Ai,−(x) = Ai,+(x−1) (i = 1, . . . ,m).

In the multiplicative notation for the sine function

〈z〉 = z
1
2 − z−

1
2 = 2

√
−1 sin(πζ), z = e(ζ) = e2π

√
−1ζ ,

the coefficients Ai,+(x) are expressed as

Ai,+(x) =
〈axi〉〈bxi〉〈cxi〉〈dxi〉

〈x2
i 〉〈qx2

i 〉
∏

1≤j≤m;j ̸=i

〈txi/xj〉〈txixj〉
〈xi/xj〉〈xixj〉

(i = 1, . . . ,m).

1.2 Koornwinder polynomials

We denote by P = P (Cm) the weight lattice of type Cm, and by P+ the

corresponding cone of dominant integral weights:

P = Z ε1 ⊕ · · · ⊕ Z εm, P+ = {λ =
∑m

i=1λiεi ∈ P | λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 } .

The cone P+ is identified with the set of all partitions λ with l(λ) ≤ m. Also, we

denote by W = W (Cm) = {±1}m oSm the Weyl group (hyperoctahedral group).
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For generic parameters (a, b, c, d|q, t), the Koornwinder polynomials Pλ(x) =

Pλ(x; a, b, c, d|q, t) (λ ∈ P+) are characterized as W -invariant Laurent polynomials

in x such that

(1) Pλ(x) = mλ(x) + lower terms w.r.t. the dominance ordering,

(2) DxPλ(x) = Pλ(x)dλ, dλ =
∑m

i=1

(
αtm−i(qλi−1)+α−1t−m+i(q−λi−1)

)
,

where mλ(x) =
∑

µ∈W.λxµ stands for the orbit sum of the monomial xλ, and

α = (abcdq−1)
1
2 .

We take the coefficient field K = Q(a
1
2 , b

1
2 , c

1
2 , d

1
2 , q

1
2 , t

1
2 ), regarding the square

roots of the six parameters as indeterminates. The Koornwinder polynomials then

form a K-basis of the ring K[x±1]W = K[x±1
1 , . . . , x±1

m ]W of W -invariant Laurent

polynomials:
K[x±]W =

⊕
λ∈P+

K Pλ(x).

1.3 Orthogonality

Assuming that |q| < 1, we define the weight function w(x) = w(x; a, b, c, d|q, t)
by setting w(x) = w+(x)w+(x−1) where

w+(x) =
m∏

i=1

(x2; q)∞
(axi, bxi, cxi, dxi; q)∞

∏
1≤i<j≤m

(xi/xj , xixj ; q)∞
(txi/xj , txixj ; q)∞

.

When max {|a|, |b|, |c|, |d|, |t|} < 1, the Koornwinder polynomials satisfy the or-

thogonality relation∫
Tm

Pλ(x)Pµ(x)w(x)
dx1 · · · dxm

x1 · · ·xm
= 0 (λ, µ ∈ P+;λ ̸= µ)

where Tm =
{
x ∈ (C∗)m

∣∣ |xi| = 1 (i = 1, . . . ,m)
}
.

This orthogonality follows from the fact that Dx is formally selfadjoint with

respect to the weight function w(x). Note also that the leading coefficient A1,+(x)

of Dx is recovered from the positive part w+(x) of w(x) by

A1,+(x) =
〈ax1〉〈bx1〉〈cx1〉〈dx1〉

〈x2
1〉〈qx2

1〉
∏

2≤j≤m

〈tx1/xj〉〈tx1xj〉
〈x1/xj〉〈x1xj〉

= const.
Tq,x1w+(x)

w+(x)
.
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2 q-Representation theoretic aspects

2.1 Affine Hecke algebra

The Koornwinder polynomials can be formulated in terms of (double) affine

Hecke algebras. Consider the Hecke algebras

H(W aff) = K〈T0, T1, . . . , Tm〉 ⊃ H(W ) = K〈T1, . . . , Tm〉

of type C
(1)
m and of type Cm, imposing the quadratic relations

(Ti − t
1
2
i )(Ti + t

− 1
2

i ) = 0 (i = 0, 1, . . . ,m)

with three unequal parameters t0, t1 = · · · = tm−1 = t, tm. Note that the braid

relations of degree four

T0T1T0T1 = T1T0T1T0, Tm−1TmTm−1Tm = TmTm−1TmTm−1

are imposed on the pairs of indices (0, 1) and (m − 1,m) when m ≥ 2.

The affine Hecke algebra H(W aff) acts on the K-algebra of Laurent polynomials

A = K[x±] through the Lusztig operators. In fact there is a two-parameter family

of K-algebra homomorphisms

ρu0,um : H(W aff) → Dq,x[W ] = K(x)[τ±1;W ] (τ = (τ1, . . . , τm); τi = Tq,xi)

from the affine Hecke algebra to the ring of q-difference-reflection operators such

that

ρu0,um(T0) = t
1
2
0 +

〈t0q/x2
1〉 + 〈u0〉

〈q/x2
1〉

(s0 − 1),

ρu0,um(Ti) = t
1
2 +

〈txi/xi+1〉
〈xi/xi+1〉

(si − 1) (i = 1, . . . ,m − 1),

ρu0,um(Tm) = t
1
2
m +

〈tmx2
m〉 + 〈um〉
〈x2

m〉
(sm − 1).

The four parameters (t0, tm, u0, um) are related to the Askey-Wilson parameters

(a, b, c, d) through

a = t
1
2
mu

1
2
m, b = −t

1
2
mu

1
2
m, c = q

1
2 t

1
2
0 u

1
2
0 , d = −q

1
2 t

1
2
0 u

− 1
2

0 .
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2.2 q-Dunkl operators

In this affine Hecke algebra H(W aff), we define the q-Dunkl operators or the

Cherednik operators Y1, . . . , Ym by

Yi = TiTi+1 · · ·TmTm−1 · · ·T0T
−1
1 · · ·T−1

i−1 (i = 1, . . . ,m).

These elements commute with each other, and the monomials Y µ = Y µ1
1 · · ·Y µm

m

(µ ∈ P ) form a commutative K-subalgebra

K[Y ±1] =
⊕
µ∈P

KY µ ⊂ H(W aff)

of the affine Hecke algebra. Let {Tw}w∈W be the K-basis of the finite dimensional

Hecke algebra H(W ) defined by setting Tw = Ti1 · · ·Til
for any reduced decompo-

sition w = si1 · · · sil
. Then we obtain a K-basis {Y µTw | µ ∈ P,w ∈ W} for the

affine Hecke algebra:

H(W aff) =
⊕

µ∈P ;w∈W

K Y µTw =
⊕

w∈W

K[Y ±1]Tw =
⊕
µ∈P

Y µ H(W ).

Furthermore the center of the affine Hecke algebra coincides with the ring of W -

invariant Laurent polynomials of the q-Dunkl operators (Bernstein’s theorem):

ZH(W aff) = K[Y ±1]W .

On the ring of Laurent polynomials A = K[x±1], the elements of the commu-

tative subalgebra K[Y ±1] of the affine Hecke algebra H(W aff) are simultaneously

diagonalized by the nonsymmetric Koornwinder polynomials Eµ(x) (µ ∈ P ). Fur-

thermore A = K[x±1] decomposes into the direct sum of irreducible H(W aff)-

submodules V (λ) parametrized by λ ∈ P+:

A = K[x±] =
⊕

λ∈P+

V (λ), V (λ) =
⊕

µ∈W.λ

K Eµ(x).

Each V (λ) has a one-dimensional K-subspace of H(W )-invariants (W -invariants)

whose basis is given by the Koornwinder polynomial Pλ(x):

AW = AH(W ) =
⊕

λ∈P+

V (λ)H(W ); V (λ)H(W ) = K Pλ(x).

In this sense the Koornwinder polynomials are thought of as zonal spherical func-

tions for the pair (H(W aff),H(W )) of the affine Hecke algebra relative to the finite

dimensional Hecke algebra.
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2.3 Commuting family of q-difference operators

By restricting the action of the central elements f(Y ), f ∈ K[ξ±1]W , to the sub-

ring of W -invariant Laurent polynomials AW = K[x±1]W , we obtain a commuting

family of W -invariant q-difference operators with rational coefficients:

Df = f(Y )
∣∣
K[x±1]W

: K[x±1]W → K[x±1]W (f ∈ K[ξ±1]W ).

If we take

f(ξ) =
m∑

i=1

(ξi+ξ−1
i −αtm−i−α−1t−m+i) ∈ K[ξ±1]W , α = (t0tm)

1
2 = (abcdq−1)

1
2

for f in particular, it turns out that the corresponding q-difference operator Df

is precisely the q-difference operator of Koornwinder

Df = Dx =
m∑

i=1

Ai,+(x)(Tq,xi − 1) +
m∑

i=1

Ai,−(x)(T−1
q,xi

− 1).

Namely, from the center ZH(W aff) of the affine Hecke algebra, we obtain a com-

muting family of W -invariant q-difference operators, containing Dx as a member.

All the members of this commuting family are simultaneously diagonalized by the

Koornwinder polynomials:

DfPλ(x) = f(Y )Pλ(x) = Pλ(x)f(αtρqλ) (λ ∈ P+)

for all f ∈ K[ξ±1]W , where the eigenvalues are given by the evaluation of f at

ξ = αtρqλ = (αtm−1qλ1 , αtm−2qλ2 , . . . , αqλm).

For the detail, see Stokman’s Laredo lectures (2004).
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3 Van Diejen’s q-difference operators

Koornwinder’s q-difference operator Dx admits a commuting family of alge-

braically independent q-difference operators D(1)
x ,. . . , D(m)

x (van Diejen, 1994,

1996). To be more precise, there exists a commuting family of W -invariant q-

difference operators Df , parametrized by W -invariant Laurent polynomials f(ξ) ∈
K[ξ±1]W in the dual variables ξ = (ξ1, . . . , ξm), that are diagonalized by the

Koornwinder polynomials Pλ(x) (λ ∈ P+):

Df Pλ(x) = Pλ(x) f(αtρqλ), αtρqλ = (αtm−1qλ1 , . . . , αtqλm−1 , αqλm).

In this commuting family, van Diejen’s q-difference operators correspond to a

certain system of generators of the K-algebra of invariants K[ξ±1]W . In order to

describe van Diejen’s operators, we first specify the corresponding W -invariant

Laurent polynomials in K[ξ±1]W .

We introduce the notation

〈z; w〉 = z + z−1 − w − w−1 = 〈z/w〉〈zw〉

corresponding to cos(2πζ)−cos(2πω) = − sin(π(ζ−ω)) sin(π(ζ+ω)) in the additive

variables such that z = e(ζ), w = e(ω). Note also the eigenvalues dλ of Dx is

expressed as

dλ =
∑m

i=1

(
αtm−iqλi +α−1t−m+iq−λi−αtm−i−α−1t−m+i

)
=

∑m
i=1 〈αtm−iqλi ; αtm−i〉.

3.1 Fundamental invariants er(ξ; α|t) (r = 1, . . . ,m)

We define W -invariant Laurent polynomials er(ξ; α|t) (r = 0, 1, . . . ,m) as the

expansion coefficients of the product
m∏

j=1

〈u; ξj〉 =
m∏

j=1

(u+u−1−ξj−ξ−1
j ) =

m∑
r=0

(−1)r〈u; α〉t,m−rer(ξ; α|t)

in terms of the t-shifted factorials associated with 〈u; α〉:

〈u;α〉t,k = 〈u;α〉〈u;αt〉 · · · 〈u; αtk−1〉 =
k−1∏
i=0

(u + u−1 − αti − α−1t−i).
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Then we have

er(ξ; α|t) =
∑

1≤j1<...<jr≤m

〈ξj1 ; αtj1−1〉 · · · 〈ξjr
;αtjr−r〉

= m(1r)(ξ) + lower terms w.r.t. the dominance ordering

for r = 0, 1, . . . ,m. Hence er(ξ; α|t) (r = 1, . . . ,m) form a generator system of

the K-algebra K[ξ±1]W of W -invariants. Furthermore, it turns out that er(ξ; α|t)
is essentially the BCm interpolation polynomial of Okounkov attached to the

fundamental weight (1r):

(1) For any partition µ with l(µ) < r, i.e. µ ̸⊃ (1r), er(αtρqµ; α|t) = 0.

(2) er(αtρq1r

;α|t) = (−1)r〈αtm−r;αtm−rq〉t,r.

3.2 Van Diejen’s q-difference operators

Van Diejen’s q-difference operators D(1)
x , . . . ,D(m)

x are characterized as W -

invariant q-difference operators corresponding to the fundamental invariants

er(ξ; α|t) ∈ K[ξ±]W (r = 1, . . . ,m) introduced above. Namely they are

diagonalized by the Koornwinder polynomials as

D(r)
x Pλ(x) = Pλ(x) er(αtρqλ; α|t) (λ ∈ P+).

Noting that
m∏

i=1

〈u; ξi〉 =
m∑

r=0

(−1)r〈u; α〉t,m−r er(ξ; α|t),

we introduce the generating function

Dx(u) =
m∑

r=0

(−1)r〈u;α〉t,m−r D(r)
x ,

so that

Dx(u)Pλ(x) = Pλ(x)
m∏

i=1

〈u; αtm−iqλi〉 (λ ∈ P+).

For each r = 0, 1, . . . ,m, van Diejen’s q-difference operator D(r)
x is expressed in

the form
D(r)

x =
∑

µ∈P ; µ≤(1r)

A(r)
µ (x)Tµ

q,x
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with certain rational functions A
(r)
µ (x). Noting that each µ ≤ (1r) can be ex-

pressed as µ =
∑

i∈I ± εi for some subset I ⊂ {1, . . . ,m} with |I| ≤ r, we

represent such a µ as a pair (I, ϵ) of a subset I and a mapping ϵ : I → {±1}:

D(r)
x =

∑
(I,ϵ); |I|≤r

A
(r)
I,ϵ(x)T (I,ϵ)

q,x .

We remark that D(0)
x = 1 and D(r)

x (1) = 0 for r = 1, . . . ,m. Namely, for r > 0

the constant function 1 is an eigenfunction of D(r)
x with eigenvalue 0. This means

that the constant term A
(r)
φ (x) of D(r)

x is determined from the other terms by

A
(r)
φ (x) = −

∑
(I,ϵ); 0<|I|≤r

A
(r)
I,ϵ(x).

Setting M = {1, . . . ,m}, for two subsets I, J ⊂ M with I ∩ J = φ, we define

A(xI ; xJ) =
∏
i∈I

〈axi〉〈bxi〉〈cxi〉〈dxi〉
〈x2

i 〉〈qx2
i 〉

∏
i,j∈I;i<j

〈txixj〉〈qtxixj〉
〈xixj〉〈qxixj〉

∏
i∈I;j∈J

〈txi/xj〉〈txixj〉
〈xi/xj〉〈xixj〉

.

Note that this function A(xI ; xM\I) for I = {1, . . . , r} essentially comes from the

positive part w+(x) of the weight function:

A(x1, . . . , xr; xr+1, . . . , xm) = const.
Tq,x1 · · ·Tq,xrw+(x)

w+(x)

Then, for each subset I ⊂ M with |I| = r, the coefficient A
(r)
I,ϵ(x) is given by

A
(r)
I,ϵ(x) = A(xϵ

I ; xM\I),

and for I ⊂ M with |I| < r, A
(r)
I,ϵ(x) is expressed as the product

A
(r)
I,ϵ(x) = A(xϵ

I ;xM\I)A
(r−|I|)
φ (xM\I)

with the 0th order term of the operator D(r−|I|)
xM\I

.

It is also known that the 0th order term of D(r)
x is expressed as

A
(r)
φ (x) = (−1)r

∑
(I,ϵ);|I|=r

B(xϵ
I ; xM\I),

where

B(xI ;xJ) =
∏
i∈I

〈axi〉〈bxi〉〈cxi〉〈dxi〉
〈x2

i 〉〈qx2
i 〉

∏
i,j∈I;i<j

〈txixj〉〈qxixj/t〉
〈xixj〉〈qxixj〉

∏
i∈I;j∈J

〈txi/xj〉〈txixj〉
〈xi/xj〉〈xixj〉

.

12



3.3 Duality and Pieri formula

The values of the Koornwinder polynomials Pλ(x) at the points

x = atρqµ = (atm−1qµ1 , atm−2qµ2 , . . . , aqµm) (µ ∈ P+)

have a remarkable duality property. We denote by ◦ the involutive automorphism

of the coefficient field K determined by a◦ = α, b◦ = β, c◦ = γ, d◦ = δ where

α =
√

abcd/q, β =
√

qab/cd, γ =
√

qac/bd, δ =
√

qad/bc.

Note that αβ = ab, αγ = ac, αδ = ad. Also, for each Laurent polynomial

F (x) ∈ K[x±], we denote by F ◦(x) the Laurent polynomial obtained by applying

the involution ◦ to its coefficients. Then we have

Pλ(atρqµ)
Pλ(atρ)

=
P ◦

µ(αtρqλ)
P ◦

µ(αtρ)
(λ, µ ∈ P+).

If we use the normalization P̃λ(x) = Pλ(x)/Pλ(atρ), this duality implies

P̃λ(atρqµ) = P̃ ◦
µ(αtρqλ) (λ, µ ∈ P+).

Combining this duality with the explicit formulas for van Diejen’s q-difference

operators, we obtain the Pieri formula with respect the multiplication by the

fundamental invariants er(x; a|t) (r = 0, 1, . . . ,m). In fact from∑
ν≤(1r)

A(r)
ν (x)P̃λ(qνx) = P̃λ(x) er(αtρqλ; α|t)

we obtain ∑
ν≤(1r)

A(r)
ν (atρqµ)P̃λ(atρqµ+ν) = P̃λ(atρqµ) er(αtρqλ; α|t)

by setting x = atρqµ (µ ∈ P+). Hence by the duality we have∑
ν≤(1r)

A(r)
ν (atρqµ)P̃ ◦

µ+ν(αtρqλ) = P̃ ◦
µ(αtρqλ) er(αtρqλ; α|t).

By applying ◦ to this formula, we obtain∑
ν≤(1r)

A(r)◦
ν (αtρqµ)P̃µ+ν(atρqλ) = P̃µ(atρqλ) er(atρqλ; a|t) (λ ∈ P+)

13



and hence by replacing x for atρqλ

∑
ν≤(1r)

A(r)◦
ν (αtρqµ)P̃µ+ν(x) = P̃µ(x) er(x; a|t).

This implies the Pieri formula

er(x; a|t) Pµ(x) =
∑

λ−µ≤(1r)

C
(r)
λ/µPλ(x), C

(r)
λ/µ = A

(r)◦
λ−µ(αtρqµ)

Pµ(atρ)
Pλ(atρ)

.

for r = 0, 1, . . . ,m. Since C
(r)
µ+(1r)/µ = 1, we also have

Pµ+(1r)(atρ) = A
(r)◦
λ−µ(αtρqµ)Pµ(atρ).

From this one can evaluate Pλ(x) at the reference point atρ as follows:

Pλ(atρ) =
m∏

i=1

〈abcdq−1tm−i〉q,λi〈abtm−i〉q,λi〈actm−i〉q,λi〈adtm−i〉q,λi

〈abcdq−1t2(m−i)〉q,2λi

·
∏

1≤i<j≤m

〈tj−i+1〉q,λi−λj 〈abcdq−1t2m−i−j+1〉q,λi+λj

〈tj−i〉q,λi−λj 〈abcdq−1t2m−i−j〉q,λi+λj

.

3.4 Relation to the affine Hecke algebra

The fundamental W -invariants er(ξ; α|t) (r = 1, . . . ,m) naturally arise in the

framework of affine Hecke algebra. In the context of q-Dunkl operators, van

Diejen’s q-difference operators D(r)
x arise from the q-Dunkl operators er(Y ; α|t)

by restriction to K[x±1]W :

D(r)
x = er(Y ; α|t)

∣∣
K[x±1]W

(r = 0, 1, . . . ,m).

Also, the generating function Dx(u) =
m∑

r=0

(−1)r〈u;α〉t,m−rD(r)
x is expressed as

Dx(u) = 〈u; Y1〉 · · · 〈u; Ym〉
∣∣
K[x±1]W

.

Let
U =

∑
w∈W

t
1
2
wTw ∈ H(W ) (1)

be the symmetrizer of the Hecke algebra of type Cm, where tw is defined as

tw = ti1 · · · til
by taking any reduced decomposition w = si1 · · · sil

. An interesting

14



fact is that the fundamental W -invariants er(x; a|t) with base point a are obtained

by applying this symmetrizer to a simple polynomial:

U
(
(x1−a−1t−m+r) · · · (xr−a−1t−m+r)

)
= const.er(x; a|t) (r = 0, 1, . . . ,m).

The constant factor on the right side is the Poincare series of the stabilizer

H(Ar−1×Cm−r). By applying the Cherednik involution that exchanges xi and

Y −1
i , we also have

U
(
(Y −1

1 −α−1t−m+r) · · · (Y −1
r −α−1t−m+r)

)
= const.er(Y ; α|t) (r = 0, 1, . . . ,m).

Note that, on the coefficients field K, Cherednik’s involution reduces to the invo-

lution ◦ which exchanges (a, b, c, d) with (α, β, γ, δ); in terms of the parameters

(t0, tm, u0, um), ◦ exchanges t0 and um, and tm, u0 remain invariant.

By tracing this symmetrization procedure, one can compute the action of

er(Y ; α|t) on W -invariant functions to derive an explicit formula for Df with

f = er(ξ;α|t). In this way one can derive van Diejen’s formula for his commuting

family of q-difference operators in the framework the affine Hecke algebra.
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4 Kernel functions of type BCm

4.1 Mimachi’s kernel function

It is proved by Mimachi (2001) that the function

Ψ(x; y) =
m∏

j=1

n∏
l=1

〈xj ; yl〉 =
m∏

j=1

n∏
l=1

(xj + x−1
j − yl − y−1

l ).

satisfies the functional equation

〈t〉DxΨ(x; y) + 〈q〉D̂yΨ(x; y) = 〈tm〉〈qn〉〈abcdtm−1qn−1〉Ψ(x; y)

where D̂y = D(a,b,c,d|t,q)
y is the Koornwinder operator in the y variables with (q, t)

replaced by (t, q). From this formula, he established the expansion formula

Ψ(x; y) =
∑

λ⊂(nm)

(−1)|λ
∗| Pλ(x; a, b, c, d|q, t) Pλ∗(y; a, b, c, d|t, q)

of dual Cauchy type, as well as integral representations of Selberg type for Koorn-

winder polynomials.

4.2 Kernel function of Cauchy type

Kernel functions of Cauchy type for type BCm were discovered recently by

Ruijsenaars (2005) and Komori-Noumi-Shiraishi (2009).

Let Φ(x; y|q, t) be any solution of the following system of first order q-difference

equations:

Tq,xiΦ(x; y|q, t) = Φ(x; y|q, t)
n∏

l=1

〈q 1
2 t−

1
2 xi; yl〉

〈q 1
2 t

1
2 xi; yl〉

(i = 1, . . . ,m),

Tq,yk
Φ(x; y|q, t) = Φ(x; y|q, t)

m∏
j=1

〈q 1
2 t−

1
2 yk;xj〉

〈q 1
2 t

1
2 yk; xj〉

(k = 1, . . . , n).

Then Φ(x; y|q, t) satisfies the functional equation

〈t〉DxΦ(x; y|q, t) − 〈t〉D̃yΦ(x; y|q, t) = 〈tm〉〈t−n〉〈abcdq−1tm−n−1〉Φ(x; y|q, t),

where D̃y is the Koornwinder operator with parameters (a, b, c, d) replaced by

(
√

qt/a,
√

qt/b,
√

qt/c,
√

qt/d).
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Furthermore, such a function Φ(x; y|q, t) intertwines the whole commuting family

of van Diejen’s q-difference operators. In terms of the generating function

Dx(u) =
m∑

r=0

(−1)r〈u; α〉t,m−rD(r)
x

and

D̃y(u) =
n∑

s=0

(−1)s〈u; α̃〉t,n−sD̃(s)
y , α̃ = t/α,

one has
Dx(u)Φ(x; y|q, t) = 〈u; α〉t,m−nD̃y(u)Φ(x; y|q, t)

for m ≥ n. Note that the q-Saalschütz formula implies

〈u; a〉t,l =
l∑

r=0

〈t−l〉t,r
〈t〉t,r

〈tl−rab〉t,r〈b/a〉t,r〈u; b〉t,l−r.

Through this change of reference points, we obtain

D(r)
x Φ(x; y|q, t) =

r∑
p=0

(−1)p

〈t〉t,p
〈t−n+r−p, tm−r+1, t−m+n+1α−2〉t,pD̃(r−p)

y Φ(x; y|q, t).

The system of first order difference equations to be satisfied by Φ(x; y|q, t) de-

termines the kernel function only up to a multiplicative factor that is q-periodic

with respect to all the variables (x, y). By choosing such a factor appropriately,

one can construct several kernel functions of Cauchy type with different analytic

properties. Two typical choices are given by

Φ0(x; y|q, t) = (x1 · · ·xm)nκ
m∏

j=1

n∏
l=1

∏
ϵ=±1

(q
1
2 t

1
2 xjy

ϵ
l ; q)∞

(q
1
2 t−

1
2 xjyϵ

l ; q)∞

with κ such that t = qκ, and

Φ+(x; y|q, t) = g(x; y)
m∏

j=1

n∏
l=1

∏
ϵ1,ϵ2=±1

(q
1
2 t

1
2 xϵ1

j yϵ2
l ; q)∞,

where g(x; y) is an arbitrary function satisfying

Tq,xig(x; y) = g(x; y)(qx2
i )

n (i = 1, . . . ,m),

Tq,yk
g(x; y) = g(x; y)(qy2

k)m (k = 1, . . . , n).
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5 Application of kernel functions

5.1 An explicit formula for Koornwinder polynomials

By combining the Pieri formula

er(x; a|t) Pµ(x) =
∑

λ−µ≤(1r)

C
(r)
λ/µPλ(x), C

(r)
λ/µ = A

(r)◦
λ−µ(αtρqµ)

Pµ(atρ)
Pλ(atρ)

.

with the dual Cauchy formula

Ψ(x; y) =
m∏

j=1

n∏
l=1

〈xj ; yl〉 =
∑

λ⊂(nm)

(−1)|λ
∗| P̂λ(x)Pλ∗(y)

we obtain an explicit formula for Koornwinder polynomials. (Here P̂λ(x) stands

for Pλ(x; a, b, c, d|t, q).) In fact, for x′ = (x1, . . . , xm−1) we have

Ψ(x; y) = Ψ(x′; y)
n∏

l=1

〈xm; yl〉 = Ψ(x′; y)
n∑

r=0

(−1)r〈xm; a〉t,n−rer(y; a|t)

=
∑

µ⊂(nm−1)

n∑
r=0

(−1)|µ
∗|+rP̂µ(x)〈xm; a〉t,n−rPµ∗(y)er(y; a|t)

=
∑

λ⊂(nm)

∑
µ⊂(nm−1)

n∑
r=0

(−1)|µ
∗|+rP̂µ(x′)〈xm, a〉t,n−rC

(r)
λ∗/µ∗Pλ∗(y).

Hence we have

(−1)|λ
∗|P̂λ(x) =

∑
µ⊂(nm−1)

∑
0≤r≤n

(−1)|µ
∗|+rP̂µ(x′)C

(r)
λ∗/µ∗〈xm; a〉t,n−r,

namely

(−1)|λ
∗|Pλ(x) =

∑
µ⊂(nm−1)

∑
0≤k≤n

(−1)|µ
∗|+n−kPµ(x′) Ĉ

(n−k)
λ∗/µ∗ 〈xm; a〉q,k.

By repeating this procedure, we obtain an explicit formula of the form

Pλ(x) =
∑

k1,k2,...,km

cλ
k1,...,km

〈x1; a〉q,k1 · · · 〈xm; a〉q,km ,

where the coefficients are given by

cλ
k1,...,km

= (−1)|λ|+
Pm

i=1 ki

∑
µ(1),...,µ(m)

m∏
i=1

Ĉ
(n−ki)

µ(i)∗/µ(i−1)∗
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summed over all sequences of partitions µ(0), µ(1), . . . , µ(m) such that µ(i) ⊂ (ni)

(i = 1, . . . ,m) and µ(0) = φ, µ(m) = λ. This is a generalization of the tableau

representation for the Macdonald polynomials of type Am−1 to the BCm case.

5.2 Koornwinder polynomials attached to single columns

The Koornwinder polynomials attached to single columns are obtained as the

expansion coefficients of

Ψ(x; y) =
m∏

j=1

〈xj ; y〉 =
m∑

r=0

(−1)m−rP(1r)(x) pm−r(y; t)

in terms of the Askey-Wilson polynomials pm−r(y; t) with base t. By using the

4φ3-expression of the Askey-Wilson polynomials, one can derive an expression of

P(1r)(x) in terms of the fundamental W -invariants el(x; a|t) (l = 0, 1, . . . ,m).

Recall the fundamental W -invariant polynomials er(x; a|t) (r = 0, 1, . . . ,m) are

expressed as

er(x; a|t) =
∑

1≤j1<...<jr≤m

〈x; atj1−1〉 · · · 〈x; atjr−r〉 (r = 0, 1, . . . ,m).

The Koornwinder polynomials P(1r)(x) attached to single columns are expanded

as follows in terms of el(x; a|t):

P(1r)(x) =
r∑

l=0

〈tm−r+1, tm−rab, tm−rac, tm−rad, 〉t,l
〈t, t2(m−r)abcd〉t,l

er−l(x; a|t).

5.3 Koornwinder polynomials attached to single rows

When t = q−k (k = 0, 1, 2, . . .), the kernel function Φ0(x; y|q, t) of Cauchy type

reduces to Laurent polynomials

Φ0(x; y|q, q−k) = (−1)kmn
m∏

j=1

n∏
l=1

〈yl; q
1
2 (1−k)xj〉q,k.

By using the expansion of these functions for n = 1 in terms of Askey-Wilson poly-

nomials, one can also derive a new explicit formula for Koornwinder polynomials

attached to single rows.
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In order to describe Koornwinder polynomials attached to single rows, we in-

troduce the Laurent polynomials hl(x; a|q, t) (l = 0, 1, 2, . . .) by

hl(x; a|q, t) =
∑

ν1+···+νm=l

m∏
i=1

〈t〉q,νi

〈q〉q,νi

〈xi; ati−1q
P

1≤j<i νj 〉q,νi
.

In spite of the appearance, these Laurent polynomials are W -invariant, and es-

sentially coincide with the BCm interpolation polynomials of Okounkov attached

single rows. The Koornwinder polynomials P(r)(x) attached to single columns are

then expressed as follows in terms of hl(x; a|t):

〈t〉q,r

〈q〉q,r
P(r)(x) =

〈tm, tm−1ab, tm−1ac, tm−1ad〉q,r

〈q, t2(m−1)abcdqr−1〉q,r

·
r∑

l=0

(−1)l〈q−r, t2(m−1)abcdqr−1〉q,l

〈tm, tm−1ab, tm−1ac, tm−1ad〉q,l
hl(x; a|q, t).

This is a natural generalization of the 4φ3-expression of Askey-Wilson polynomials

to the BCm case.
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