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0 General remarks on kernel functions
0.1 Kernel function ®(z;y) for a pair of operators (A, B,)

Let ®(z;y) be a meromorphic function in x = (x1,..., %) and y = (y1,...,Yn),
and consider two operators A, and B, which act on meromorphic functions in x
and in y, respectively. We say that ®(z;y) is a kernel function for the pair (A, By)

if it satisfies a functional equation of the form

A D(asy) = B,O(x;y).
In the theory of Macdonald polynomials, certain explicit kernel functions play
crucial roles in eigenfunction expansions and integral representations.

Eigenfunction expansion
O(xiy) =D @) gk(W), Byor(y) = ge)h = Aufu(®@) = fi(a) Ar.
k

Integral representation

o(z) = / Sy bW)duly), Bol) = v =  Aup() = o@) A

0.2 Macdonald polynomials of type A

In order to clarify the idea, we first look at the role of kernel functions in the
theory of Macdonald polynomials of type A.

Consider the following g-difference operator D, = Dg(gq’t) in the variables z =

(X1, Tm):

D, = ngq,t) = zm: H th;m% Tg2s
]

: . . Ly
=1 1<5<m; j#1

T,

v f (@1, ) = f(T1, .., qTi, o T).

The Macdonald polynomials P\(x) = Py(x|q,t), parameterized by the partitions
A with I(X) < m, are characterized as symmetric polynomials in x such that
(1)  Px(z) = mx(x) + lower terms w.r.t. the dominance ordering,

(2) DxP,\(:L‘> = P)\(I) d/\, d,\ = Z:ll tm_iq)\i,
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where my () = 3_ ¢, 27" stands for the monomial symmetric function of mono-
mial type .

Furthermore, D, admits a commuting family D) (r =0,1,...,m) of higher
order g-difference operators such that DS;I) =D,:

(r)—t Z H %quz (r=0,1,...,m).

\I|=r icl;j¢I R Ry
These Macdonald-Ruijsenaars q-difference operators are simultaneously diagonal-
ized by the the Macdonald polynomials. In terms of the generating function

D, (u) = Z(—u)rl)g), one has
r=0

D.(u) Py(z) = Px(z)dx(u), da(u) =]~ (1— utm_iin).

0.3 Kernel function of Cauchy type

Assuming that |¢| < 1, we define a meromorphic function ®(z;y|q,t) in the two

sets of variables z = (x1,...,2m), ¥y = (Y1,...,yn) by

(t
(z;39lq,t) HH 239 Do yl’ (kernel function of Cauchy type),
j=1i=1 xjyl’
where (a;¢)oo = [[r—o(1 — ag®). This function ®(z;ylq,t) is expanded as follows

in terms of Macdonald polynomials in = variables and y variables:

O(zsylg.t) = Y. balg,t) Pa(zlg.t) Palylg.t).

{(N)<min{m,n}
This identity corresponds to the functional equation

1—¢mn

— DY Apart from the question of evaluating

for the g-difference operator D,
the coefficients by(q,t), this functional equation already guarantees the existence
of an expansion formula as described above. Note also that the kernel function
®(x;ylg,t) furthermore intertwines the whole commuting family of Macdonald-

Ruijsenaars operators:

D, (u)®(x;ylq, t) = (U;t)m—n Dy (™ "u)@(z;y]g, t).



0.4 Kernel function of dual Cauchy type

The function

m n

U(x;y) = HH (x; —w) (kernel function of dual Cauchy type)

j=1l=1

is expanded in terms of Macdonald polynomials as follows:

U(zy)= Y ()W Pa(alg,t) Pa-(ylt.q),
AC(nm™)

/

M 1y---,m — X]) is the partition representing the

where A\* = (m — A, ,m — \
complement of A in the m xn rectangle (n™). This expansion formula corresponds

to the functional equation

(1 =)D (@ y) — (1 — )DF VW (259) = (1 — t7q") V(23 y).



1 Koornwinder polynomials

Koornwinder polynomials (Koornwinder, 1992)

- multivariable generalization of Askey-Wilson polynomials to type BC,,.

1.1 Koornwinder's ¢-difference operator D,

_ Déa,b,c,d|q,t)

We consider the ¢-difference operator D, in m variables z =

(z1,...,Zm), depending on six parameters (a, b, ¢, d|q,t):
Dy =) Ay (@) Ty, — 1)+ Y A (2)(T, ), - 1)
i=1 i=1
:Z(Ai,—i—()qmz"’A qx Z H— +A —(z)),
i=1 i=1

where A; + () = A; 1+ (z;a,b,¢,d|g,t) are defined by

(1—a:vi)(1—1bmi)(1—cxi)(1 — dx;) H (1—twi/xj)(1—txixj),
(abedg=1)2 (1 — 22)(1 — qz?) 1< j<mn i t(1 —zi/2)(1 — zi25)

Ai,—(x) :A’i,—F(x_l) (Z: 17"'7m>'

Aiy(r) =

In the multiplicative notation for the sine function
(z) =27 — 277 =2/ 1sin(m(), z=e(() = e2™VIE,
the coefficients A; 4 (=) are expressed as

=1,...,m).

e (b en () (o)t
A==y L e

1.2 Koornwinder polynomials

We denote by P = P(C,,) the weight lattice of type C,,, and by P* the

corresponding cone of dominant integral weights:

P=Ze1® - ®Zenp, P+:{)\:Z?;1)\i€iep‘)\12)\22"‘2)\77120}.

The cone Pt is identified with the set of all partitions A with I[(\) < m. Also, we
denote by W = W (C,,,) = {£1}" x &,,, the Weyl group (hyperoctahedral group).
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For generic parameters (a,b,c,d|q,t), the Koornwinder polynomials Py(z) =
Py(z;a,b,c,d|q,t) (A € PT) are characterized as W-invariant Laurent polynomials

in « such that

(1)  Pr(z) = mx(z) + lower terms w.r.t. the dominance ordering,

(2) DuPi(z) = Pa(x)dy, dy=31" (™ (gM —1)+a ™t (g M -1)),

where my(z) = > .\ stands for the orbit sum of the monomial 2, and
o = (abedg™1)z.
We take the coefficient field K = Q(a% bz, c2, d%,q% , t%), regarding the square

roots of the six parameters as indeterminates. The Koornwinder polynomials then

form a K-basis of the ring K[zF" = K[zi',..., 2z |W of W-invariant Laurent
polynomials:
= P KP(x)
AEPT

1.3 Orthogonality

Assuming that |¢| < 1, we define the weight function w(z) = w(z;a,b,c,d|q,t)
by setting w(x) = w, (x)w, (z71) where

m
H ) H (ﬂfz’/ﬂ?j,xifﬂj;CI)oo
axl,bxz,cxz,dazz, q) oo it

i=1 1<i<j<m (txz/xj,txzx], q)oo

When max {|al, ||, |c|, |d],|t|} < 1, the Koornwinder polynomials satisfy the or-

thogonality relation

dzy---dx,

[ P@P@u@ 0 0 (e Prid£ )

l’l .« .. xm
where T = {z € (C*)™ | |z;| =1 (i=1,...,m)}.
This orthogonality follows from the fact that D, is formally selfadjoint with
respect to the weight function w(x). Note also that the leading coefficient A; 4 ()

of D, is recovered from the positive part w, (x) of w(x) by

A (z) = (axy1)(bxy)(cxy)(dz1) H (txy )x;) (terx;) _

ety AL e ) wy (2)



2 g-Representation theoretic aspects
2.1 Affine Hecke algebra

The Koornwinder polynomials can be formulated in terms of (double) affine

Hecke algebras. Consider the Hecke algebras

H(Waﬁ) = K<T07T17 SRR Tm> D H(W) = K<T1, e 7Tm>
of type C’fﬁ ) and of type C,,, imposing the quadratic relations

(T, —t2)(T+4%)=0 (i=0,1,...,m)

7

with three unequal parameters tg,t1 = --- = t,,_1 = t,t,,. Note that the braid

relations of degree four

ToTh'ToTy = Th'IoTh'To, T aTinTm1Tm =TT 1T T

are imposed on the pairs of indices (0,1) and (m — 1,m) when m > 2.
The affine Hecke algebra H(W?T) acts on the K-algebra of Laurent polynomials
A = K[zT] through the Lusztig operators. In fact there is a two-parameter family

of K-algebra homomorphisms

Pug.r, - ’H(Waﬂ) — Dy W] = K(az)[Til; W] (T=(T1s- s Tm);Ti = Tg.z;)

from the affine Hecke algebra to the ring of ¢-difference-reflection operators such

that

b, loafad) )
puo,um(TO) - tO + <q/x%> ( 0 1)7
puo,um(ﬂ):té—l—%(si—l) (i=1,...,m—1),
Pug i (Tm) = tgln T <tm$n<22+> ) (Sm —1).

The four parameters (to, t,,, uo, Uy, ) are related to the Askey-Wilson parameters
(a,b,c,d) through



2.2 g-Dunkl operators

In this affine Hecke algebra H(W?%), we define the g-Dunkl operators or the
Cherednik operators Yi,...,Y,, by

Y, =TTiy1 - TonTor - ToTy -T2 (i=1,...,m).

These elements commute with each other, and the monomials Y# = Y/ ... Y im
(1 € P) form a commutative K-subalgebra
K[Y*'] = G Ky* c H(W*)
HEP
of the affine Hecke algebra. Let {Ty},,cy be the K-basis of the finite dimensional
Hecke algebra H (W) defined by setting T3, = T}, - - - T;, for any reduced decompo-
Then we obtain a K-basis {Y*T,, | n € P,w € W} for the

sition w = s, -+ 85,

affine Hecke algebra:
HW* = @ KY*T, = P Ky* T, = P v HW).
pnEP;weW weW HeEP
Furthermore the center of the affine Hecke algebra coincides with the ring of W-

invariant Laurent polynomials of the ¢g-Dunkl operators (Bernstein’s theorem):
ZHW = K[y W,

On the ring of Laurent polynomials A = K[z%!], the elements of the commu-
tative subalgebra K[Y *!] of the affine Hecke algebra H(W?%) are simultaneously
diagonalized by the nonsymmetric Koornwinder polynomials E, (x) (1 € P). Fur-
thermore A = K[z*!] decomposes into the direct sum of irreducible H(Waf)-
submodules V' (\) parametrized by A € P*:

A=Kz = P VN, V)= P KE, ().
AeEPt HEW.A
Each V(\) has a one-dimensional K-subspace of H(W)-invariants (W -invariants)
whose basis is given by the Koornwinder polynomial P (z):
AV = MV = B V(I ()P = K Py(x).
Aep+t
In this sense the Koornwinder polynomials are thought of as zonal spherical func-
tions for the pair (H (W), H(W)) of the affine Hecke algebra relative to the finite

dimensional Hecke algebra.



2.3  Commuting family of g-difference operators

By restricting the action of the central elements f(Y), f € K[¢F1]W, to the sub-

w

ring of W-invariant Laurent polynomials A" = K[z™1]", we obtain a commuting

family of W-invariant ¢-difference operators with rational coefficients:
Dy = f(V)|gpunyw + KW - K1Y (f e KEHY),

If we take
m

. . 1 1

f(&) = Z(fi—l—ﬁ;l—atm_l—a_lt_mﬂ) e KUY, a = (totym)? = (abedg™!)?
i=1

for f in particular, it turns out that the corresponding g¢-difference operator D

is precisely the ¢-difference operator of Koornwinder

m

Dy=D, = ZAZ',-I-(LE)(T%%‘ -1)+ ZAL_($)(T(;$1. - 1).
=1

=1

Namely, from the center ZH(W?f) of the affine Hecke algebra, we obtain a com-
muting family of W-invariant g-difference operators, containing D, as a member.
All the members of this commuting family are simultaneously diagonalized by the

Koornwinder polynomials:
DyPy(z) = f(Y)Pr(z) = PA(z) f(at’q®) (A€ PT)
for all f € K[¢T1]W, where the eigenvalues are given by the evaluation of f at

£ =atP® = (at™ LM at™ 2 L agtm).

For the detail, see Stokman’s Laredo lectures (2004).



3 Van Diejen’s ¢-difference operators

Koornwinder’s ¢-difference operator D, admits a commuting family of alge-
braically independent g¢-difference operators Dg(gl),. cey D;(rm) (van Diejen, 1994,
1996). To be more precise, there exists a commuting family of W-invariant ¢-
difference operators Dy, parametrized by W-invariant Laurent polynomials f(§) €
K[EFYW in the dual variables & = (&1,...,&y), that are diagonalized by the
Koornwinder polynomials Py(z) (A € PT):

Dj Pa(z) = PA(z) f(at’q”), at’q* = (at™ g™, ... atg* 1, ag™™).

In this commuting family, van Diejen’s g-difference operators correspond to a
certain system of generators of the K-algebra of invariants K[¢T1]". In order to
describe van Diejen’s operators, we first specify the corresponding W-invariant
Laurent polynomials in K[¢F1W

We introduce the notation

(z;w) =2+ 271 —w—w™! = (z/w)(zw)

corresponding to cos(2m()—cos(2nw) = — sin(m({—w)) sin(7({+w)) in the additive
variables such that z = e((), w = e(w). Note also the eigenvalues dy of D, is

expressed as

9l
Sl i .

3.1 Fundamental invariants e,.(&; alt) (r=1,...,m)

We define W-invariant Laurent polynomials e, (§; alt) (r = 0,1,...,m) as the

expansion coefficients of the product

[ = H (utu™ =& =& = Y (=1 (ws a)r.mrer (€ alt)
j: : r=0
in terms of the ¢-shifted factorials associated with (u; «):
k—1 A ‘
(5 @)k = {3 0) (s ) -+ s at* ) = [[ (w+ ™t — at — a~1t7%).
i=0
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Then we have

e(&alty= > (Grath T (g et )

1<i<..<jr<m

= m(1r)(§) + lower terms w.r.t. the dominance ordering

for r = 0,1,...,m. Hence e,.(§;alt) (r = 1,...,m) form a generator system of
the K-algebra K[¢F1]W of W-invariants. Furthermore, it turns out that e,(&; alt)
is essentially the BC), interpolation polynomial of Okounkov attached to the
fundamental weight (17):

(1) For any partition p with I(p) < r, ie. u 5 (17), e (at’¢"; alt) =
(2) eq(at?q salt) = (1) (at™ " at™ )

3.2 Van Diejen’s g-difference operators

Van Diejen’s ¢-difference operators Dg(cl),...,Dg(cm) are characterized as W-
invariant g¢-difference operators corresponding to the fundamental invariants
e (&alt) € K[EF"W (r = 1,...,m) introduced above. Namely they are

diagonalized by the Koornwinder polynomials as

DY) Py(z) = Pa(x) e (at’q*ialt) (A€ PY).

Noting that

m m

H<u; £2> = Z(_l)T<u; Oé>t,m—r er(f; Oé‘t),

i=1 r=0

we introduce the generating function

Dy(w) =Y (1) (u; @)t,m—r D,

r=0

so that .
D, (u) Py (@) [J(wsat™ ™) (A e P).
=1
For each r = 0,1,...,m, van Diejen’s ¢-difference operator D;(Cr) is expressed in
the form
D= Y AD(x)T
pEP; u<(17)

11



with certain rational functions Al(f)(x). Noting that each u < (1) can be ex-
pressed as p = ) .., £ & for some subset I C {1,...,m} with |I| < r, we
represent such a p as a pair (I,¢€) of a subset I and a mapping € : [ — {£1}:
DI = Y Al T
(Le); [|<r
We remark that DI = 1 and Dg(f)(l) =0 for r = 1,...,m. Namely, for » > 0

the constant function 1 is an eigenfunction of Dy) with eigenvalue 0. This means

that the constant term Ag) (x) of D) is determined from the other terms by

AV@=— Y AN@).

(1,€); 0<|I|<r

Setting M = {1,...,m}, for two subsets I, J C M with I NJ = ¢, we define

Arzs) =] <axi><b€i><cx2i><d$i> 11 (tziz))(qtw;z;) 1 (twi/zj)(tzizs)
i€l (i) {qz7) ijeli<i (Tizj)(qwiz;) ienjer (wi/x;)(iz;)
Note that this function A(zy;zpn ) for I ={1,..., 7} essentially comes from the

positive part w, (x) of the weight function:

Tq7x1 e TqamTw+ (x)
w4 (z)

A(x1, . o X Tty e o+, Tyyy) = cONSE.

Then, for each subset I C M with |I| = r, the coefficient Ayz(m) is given by
AYi (z) = A(xfr;wM\I),
and for I C M with |I| <, Agrz(x) is expressed as the product
AYE (z) = A(x%xM\I)AgiuD(xM\I)

with the Oth order term of the operator pir-lh,

TMN\T

It is also known that the Oth order term of D;(f) is expressed as

AV (@)= (-1 Y Blafizang),

(L,e);|I|=r

where

Blayiay) = [[altbelendeg pp - {tws)laries /) pr (/) (i)

o @lexd) S (weg)gmig) o (/) (@)

12



3.3 Duality and Pieri formula

The values of the Koornwinder polynomials Py (z) at the points

r = at’g" = (at™ Lght at™ 2g"2, ... agh™) (ne P™)

have a remarkable duality property. We denote by ° the involutive automorphism

of the coefficient field K determined by a° = a, b° = (3, ¢® = v, d° = § where
= +/abed/q, B =+/qab/cd, v = +/qac/bd, § = +/qad]/bc.

Note that af = ab, ay = ac, ad = ad. Also, for each Laurent polynomial
F(z) € K[z*], we denote by F°(z) the Laurent polynomial obtained by applying

the involution ° to its coefficients. Then we have

P (atPgt P°(atPg?
)\(a q ) _ u( q ) (/\”u c P+)
Py (atP) Pg(atr)

If we use the normalization Py(z) = Px(x)/Px(at?), this duality implies
Py (at”q") = Po(atp ) (A, u€ PT).

Combining this duality with the explicit formulas for van Diejen’s g-difference
operators, we obtain the Pieri formula with respect the multiplication by the

fundamental invariants e,(x;alt) (r =0,1,...,m). In fact from
Z AT (1) Py (¢" %) = Py (2) e, (at?q; aft)
v<(1m)

we obtain

> AD(at’q") Px(at*q" ) = Pa(at’q") e (at’q; alt)
v<(17)

by setting z = atPq* (u € PT). Hence by the duality we have
> AP (atPq") Py, (at?q*) = Pg(at?q*) ex(at g alt).
v<(17)

By applying ° to this formula, we obtain

Z A (atP g™ Py (atP ) = ﬁu(at”q’\) er(at’q; alt) (Ae Pt

v<(17)

13



and hence by replacing z for at”q’

> AP (atPq") Pupy () = Pu(x) ep(z;alt).

v<(17)

This implies the Pieri formula

. _ (r) () _ 4o Pyu(at?)
er(z;alt) Py () = Z C’)\/MP Cy/u = A2, (at’g" )P .

A—p<(1m)

forr=20,1,...,m. Since O")

Y = 1, we also have

Piny(at?) = AL (at?q") P (at).

From this one can evaluate Py(z) at the reference point at” as follows:

m

’ (abedq=1t2(m=D),
<tj_i+1>q%r>\j <ab0dq_1t2m_i_j+1>q,>\i+kj

1=1

[

1<i<j<m

3.4 Relation to the affine Hecke algebra

The fundamental W-invariants e, (§; «|t) (r = 1,...,m) naturally arise in the
framework of affine Hecke algebra. In the context of g-Dunkl operators, van
Diejen’s g-difference operators Dg(f) arise from the ¢-Dunkl operators e, (Y; a|t)

by restriction to K[z*!]W

D;T) =e.(Y; Oé|t)|K[mi1 (r=0,1,...,m).

]W
Also, the generating function D, (u) = Z(—l)ﬂu; a)t,m,ng(f) is expressed as
r=0

Dy(u) = (u; Y1) - (us Ym>|K[mi1]W

Let )
U= > t2T, € H(W) (1)

weWw
be the symmetrizer of the Hecke algebra of type C),, where t,, is defined as

ty = tiy -+ - t;, by taking any reduced decomposition w = s;, - - - s;,. An interesting

14



fact is that the fundamental W-invariants e, (z; a|t) with base point a are obtained

by applying this symmetrizer to a simple polynomial:

U((z1—a ™) (2, —a ™)) = const.e,(z3alt) (r=0,1,...,m).

The constant factor on the right side is the Poincare series of the stabilizer
H(A,—1 xCypp—y). By applying the Cherednik involution that exchanges x; and

Yi_l, we also have

U((Y T —a ™) (Y am ™)) = constee, (Yiaft) (r=0,1,...,m).

™

Note that, on the coefficients field K, Cherednik’s involution reduces to the invo-
lution ° which exchanges (a,b,c,d) with (o, 3,7,d); in terms of the parameters
(to, tim, Uo, Um), © exchanges tg and u,,, and t,,, up remain invariant.

By tracing this symmetrization procedure, one can compute the action of
er(Y;alt) on W-invariant functions to derive an explicit formula for Dy with
f =e-(& alt). In this way one can derive van Diejen’s formula for his commuting

family of ¢-difference operators in the framework the affine Hecke algebra.
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4 Kernel functions of type BC),
4.1 Mimachi's kernel function

It is proved by Mimachi (2001) that the function

m n m n

V(z;y) = HH(%‘;W = HH(%‘ +90j_1 —y—y ).

j=11=1 j=11=1

satisfies the functional equation
(t)Da W (z3y) + (@)Dy W(w;y) = (t™)(g")(abedt™ ' q" ") ¥ (z;y)

where ﬁy = D@(fb’b’c’d‘t’q) is the Koornwinder operator in the y variables with (g, t)

replaced by (¢,¢q). From this formula, he established the expansion formula

U(z;y)= Y (=D Py(w;a,b,¢,dlg,t) Pa-(y;a,b, ¢, d]t, )
AC(n™)
of dual Cauchy type, as well as integral representations of Selberg type for Koorn-

winder polynomials.

4.2 Kernel function of Cauchy type

Kernel functions of Cauchy type for type BC,, were discovered recently by
Ruijsenaars (2005) and Komori-Noumi-Shiraishi (2009).
Let ®(x;y|q,t) be any solution of the following system of first order g-difference

equations:

1 1
qzl™ 225y .
T2, ®(x;9lg, t) = ®(;9lg, t )HL—> (i=1,...,m),
1 (gztiziy)

m 1 1
2t 2y x
T4,y ®(z3ylg, 1) = @(z39lg, 1) Hu—j) (k=1,...,n).
j=1 < 2 kavxj>

Then ®(x;y|q,t) satisfies the functional equation
(t)D2®(x;yla,t) — (Dy® (w3 ylg, 1) = (¢™)(t™") (abedg ™ t™ ") (x3 ylq, t),
where 5y is the Koornwinder operator with parameters (a, b, ¢,d) replaced by
(Vat/a,Vqt/b,\/qt/c,v/qt/d).
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Furthermore, such a function ®(z;yl|q,t) intertwines the whole commuting family

of van Diejen’s ¢-difference operators. In terms of the generating function

Dy(u) = Z(—l)%u; 04>t,m—rD§:T)
r=0
and .
Dy(u) =Y (-1)* (@) oDy,  a=t/a,
s=0
one has

Dy (u)®(2;ylg, t) = (U5 Q) t.m—nDy(u)P(2;ylq, t)

for m > n. Note that the g-Saalschiitz formula implies

: <t_l>t r
<u; a>t,l = Z 7 <tlirab>t,r <b/a>t,r <u; b>t,lfr-

= (s

Through this change of reference points, we obtain

r

Dg(cr)q)(x; ylg, t) = Z ((;)Up <t—n+r—p, tm—M—l7 t—m+n+1a—2>tvpﬁ§r—p)q)(x; ylg, ).
p=0 \/LP

The system of first order difference equations to be satisfied by ®(x;y|q,t) de-

termines the kernel function only up to a multiplicative factor that is ¢-periodic

with respect to all the variables (z,y). By choosing such a factor appropriately,

one can construct several kernel functions of Cauchy type with different analytic

properties. Two typical choices are given by

(D()(Cc;y|q,t) — (;El...xm)n'iHH — J l; %)
j:ll:k:ﬂ(q?t 235155 Q) o

with x such that ¢t = ¢”, and
11
o (mylg,t) =gz [[TT TI (@2t225' 4% @)oo
J=1l=1 €1,ea==%1

where g(x;y) is an arbitrary function satisfying

~—~

Tyz:9(xy) = g(x;y)(qz)” (i=1,...,m),
Tow9(@;y) =gz ) (qup)™ (k=1,...,n).
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5 Application of kernel functions
5.1 An explicit formula for Koornwinder polynomials

By combining the Pieri formula

r r r)o P, (atf
) ) = X O P, o), = AT are) A

A—p<(17)

with the dual Cauchy formula

HH (o) = D ()™ | P\(2) Px-(y)

j=1l=1 AC(n™)

we obtain an explicit formula for Koornwinder polynomials. (Here Py () stands

for Py(z;a,b,c,d|t,q).) In fact, for ' = (z1,...,2,;m—1) we have
U(zy) = U(asy) [ [@mim) = U(@s9)) (—1) (@ a)en—rer(y; alt)
=1 r=0

= Z Z |,u |—HAP )<$m;a>t,n—rpu* (y)er(y;a|t)

pC(nm=1) r=0
= Z Z Z |,u |+TP )<xm7 @)y rcg*)/u Py ().
AC(n™m)puC(nm—1) r=0

Hence we have

COMIP@) = > S )R O (@ms @)t

pC(nm=1) 0<r<n

namely

CONIR @ = ST () R () G0 s 0

pnC(nm=1)0<k<n

By repeating this procedure, we obtain an explicit formula of the form
Py(z) = Z 021’.“7,%(3:1; W gky * Tm’ @) g ke s

where the coefficients are given by

A _ A4 K (n—ki)
Chy,okm — (—1)| I+ Z HC,L() * /pli=1)x

.....



summed over all sequences of partitions (9, u( ... (™ such that u(® C (n?)
(i =1,...,m) and p® = ¢, u(™ = X\ This is a generalization of the tableau
representation for the Macdonald polynomials of type A,,_1 to the BC),, case.

5.2 Koornwinder polynomials attached to single columns

The Koornwinder polynomials attached to single columns are obtained as the

expansion coefficients of

m

U(zy) = [[@im) =D (=1)™ " Pary () pm—r(y:t)

j=1 r=0

in terms of the Askey-Wilson polynomials p,,_,(y;t) with base . By using the

1¢3-expression of the Askey-Wilson polynomials, one can derive an expression of

Pury(z) in terms of the fundamental W-invariants e;(z;alt) (I =0,1,...,m).
Recall the fundamental W-invariant polynomials e, (z;alt) (r =0,1,...,m) are

expressed as

e(wa)= > {mat TN (mat™ ) (r=0,1,...,m).
I<ji<...<jr<m
The Koornwinder polynomials P;-y(x) attached to single columns are expanded

as follows in terms of ¢;(z;alt):

T

— <tm_T+17tm_Tab7 tm_ra’(;,’ tm_Tad’ >t7l
Pan(@) =3 20 abed)yy

er—l(x; a|t)
=0

5.3 Koornwinder polynomials attached to single rows

When t = ¢~ % (k=0,1,2,...), the kernel function ®q(x;y|q,t) of Cauchy type
reduces to Laurent polynomials

m n

— mn 1 -
(39l g %) = (U T[] w2 Pz am
j=1i=1

By using the expansion of these functions for n = 1 in terms of Askey-Wilson poly-
nomials, one can also derive a new explicit formula for Koornwinder polynomials

attached to single rows.

19



In order to describe Koornwinder polynomials attached to single rows, we in-

troduce the Laurent polynomials h;(z;alg,t) (1=0,1,2,...) by

t )
hl($§a|Q7t): Z H quz xmatl ! Zl<]<l >q7l/i'

vi+-Fvm=li=1 q 9Vi

In spite of the appearance, these Laurent polynomials are W-invariant, and es-
sentially coincide with the B(), interpolation polynomials of Okounkov attached
single rows. The Koornwinder polynomials P,(x) attached to single columns are

then expressed as follows in terms of h;(z;alt):

{)q,r

(@q,r

{tm tmtab tm lac, t™ lad), ,
(g, t*(m=Dabedg=1),

S D 2 Nabedy ),

(tm, tm=lab, tm~lac,t™ lad),

Py (x) =

hl(x CL|q, )
=0

This is a natural generalization of the 4¢3-expression of Askey-Wilson polynomials
to the BC,, case.
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